Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study of macroscopic segregation in ingot considering the movement and growth of equiaxial crystals

ZHANG Yang ZHANG Shijie LI Yunbo LI Ri

Citation:

Study of macroscopic segregation in ingot considering the movement and growth of equiaxial crystals

ZHANG Yang, ZHANG Shijie, LI Yunbo, LI Ri
cstr: 32037.14.aps.74.20241702
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The solidification process of alloy ingot is often accompanied by the phenomena of free dendrites growing and colliding with each other while moving, which has a non-negligible influence on the temperature field, flow field, solute field and microstructure of the ingot, and it is one of the key issues in the study of ingot solidification organization formation. The cellular automata-lattice Boltzmann (CA-LB) coupling model has been developed rapidly in recent years in dealing with the moving dendrites, which can not only maintain the morphology of the moving dendrites well, but also calculate the mutual collisions between the dendrites reasonably. In this work, the cell-automata-lattice Boltzmann model for simulating the growth of free dendrites is improved. Alternating direction implicit iteration method is used to solve the differential heat conduction equation, and the simulation parameters are not limited by stability conditions in this method. In this research, the accuracy of the flow-solid coupling of the model is verified by taking the flow around a circular cylinder for example, and the temperature field of the model is well coupled under the natural convection condition. Finally, the solidification process of Fe-0.34%C alloy ingots with or without equiaxed grain movement is simulated using this model. The simulation results show that the movement of equiaxed grains increases the contact probability with the neighboring dendrites, which leads to a more uniform grain size in the ingot; the movement of dendrites also changes the solute distribution in the center of the melt, especially increasing the size and range of the hot-top segregation; the movement of equiaxed grains is impeded by the columnar crystals, and therefore the CET region is not much affected by the movement of dendrites.
      Corresponding author: LI Ri, sdzllr@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51475138, 51975182).
    [1]

    Qi X B, Chen Y, Kang X H, Li D Z, Gong T Z 2017 Sci Rep 7 45770Google Scholar

    [2]

    Rátkai L, Pusztai T, Gránásy L 2019 npj Comput. Mater. 5 113Google Scholar

    [3]

    张士杰, 王颖明, 王琦, 李晨宇, 李日 2021 物理学报 70 238101Google Scholar

    Zhang S J, Wang Y M, Wang Q, Li C Y, Li R 2021 Acta Phys. Sin. 70 238101Google Scholar

    [4]

    Sakane S, Takaki T, Ohno M, Shibuta Y, Aoki T 2020 Comput. Mater. Sci. 178 109639Google Scholar

    [5]

    Ren J K, Chen Y, Cao Y F, Sun M Y, Xu B, Li D Z 2020 J. Mater. Sci. Tech. 58 171Google Scholar

    [6]

    Yamanaka N, Sakane S, Takaki T 2021 Comput. Mater. Sci. 197 110658Google Scholar

    [7]

    Zhang S J, Zhu B F, Li Y B, Zhang Y, Li R 2024 Comput. Mater. Sci. 245 113308Google Scholar

    [8]

    Liu L, Pian S, Zhang Z, Bao Y C, Li R, Chen H J 2018 Comput. Mater. Sci. 146 9Google Scholar

    [9]

    Wang Q, Wang Y M, Zhang S J, Guo B X, Li C Y, Li R 2021 Crystals 11 1056Google Scholar

    [10]

    Sakane S, Aoki T, Takaki T 2022 Comput. Mater. Sci. 211 111542Google Scholar

    [11]

    Meng S X, Zhang A, Guo Z P, Wang Q G 2020 Comput. Mater. Sci. 184 109784Google Scholar

    [12]

    Takaki T 2023 IOP Conf. Ser. Mater. Sci. Eng. 1274 012009Google Scholar

    [13]

    Flemings M C, Mehrabian R, Nereo G E 1968 T. Metall. Soc. AIME 239 1449

    [14]

    Bennon W D, Incropera F P 1987 Int. J. Heat Mass Tran. 30 2161Google Scholar

    [15]

    Bennon W D, Incropera F P 1987 Int. J. Heat Mass Tran. 30 2171Google Scholar

    [16]

    Beckermann C, Viskanta R 1988 Physicochemical Hydrodynamics 10 195

    [17]

    Gu J P, Beckermann C 1999 Metall. Mater. Trans. A 30 1357Google Scholar

    [18]

    Wu M, Ludwig A, Kharicha A 2016 Appl. Math. Model. 41 102Google Scholar

    [19]

    Zhang Z, Bao Y, Liu L, Pian S, Li R 2018 Metall. Mater. Trans. A 49 2750Google Scholar

    [20]

    Zhang S, Li Y, Zhang S, Zhu B, Li R 2025 Int. J. Therm. Sci. 211 109737Google Scholar

    [21]

    Rappaz M, Thévoz P H 1987 Acta Metall. 35 2929Google Scholar

    [22]

    Zhu M F, Lee S Y, Hong C P 2004 Phys. Rev. E 69 061610Google Scholar

    [23]

    Sun D K, Zhu M F, Pan S Y, Yang C R, Raabe D 2011 Comput. Math. Appl. 61 3585Google Scholar

    [24]

    Zhu M, Stefanescu D 2007 Acta Mater. 55 1741Google Scholar

    [25]

    Wen B, Zhang C, Tu Y, Wang C, Fang H 2014 J. Comput. Phys. 266 161Google Scholar

    [26]

    Mei R, Yu D, Shyy W, Luo L S 2002 Phys. Rev. E 65 041203Google Scholar

    [27]

    Drummond J E, Tahir M I 1984 Int. J. Multiphase Flow 10 515Google Scholar

    [28]

    张照 2020 硕士学位论文 (天津: 河北工业大学)

    Zhang Z 2020 M. S. Thesis (Tianjin: Hebei University of Technology

    [29]

    Shan X 1997 Phys. Rev. E 55 2780Google Scholar

    [30]

    Clever R M, Busse F H 1974 J. Fluid Mech. 65 625Google Scholar

    [31]

    Wu M, Könözsy L, Ludwig A, Schützenhöfer W, Tanzer R 2008 Steel Res. Int. 79 637Google Scholar

    [32]

    Luo S, Wang W, Zhu M 2018 Int. J. Heat Mass Tran. 116 940Google Scholar

    [33]

    Ge H H, Li J, Guo Q T, Ren F L, Xia M X, Yao J H, Li J G 2021 Metall. Mater. Trans. B 52 2992Google Scholar

  • 图 1  圆柱绕流物理模型

    Figure 1.  Model of the flow around a cylinder.

    图 2  圆柱绕流的结果 (a) Fs = 0.02; (b) Fs = 0.038; (c) Fs = 0.138; (d) Fs = 0.363

    Figure 2.  Result of the flow around a cylinder: (a) Fs = 0.02; (b) Fs = 0.038; (c) Fs = 0.138; (d) Fs = 0.363.

    图 3  圆柱绕流结果对比

    Figure 3.  Comparison of results.

    图 4  Rayleigh–Bénard自然对流模型示意图

    Figure 4.  Schematic of the Rayleigh-Bénard natural convection model.

    图 5  不同Ra数下系统达到稳态时的等温线分布 (a) Ra = 2500; (b) Ra = 5000; (c) Ra = 10000; (d) Ra = 50000

    Figure 5.  Isothermal distribution of the system reaching steady state for different Ra numbers: (a) Ra = 2500; (b) Ra = 5000; (c) Ra = 10000; (d) Ra = 50000.

    图 6  稳态Nu数随Ra数的变化规律

    Figure 6.  Variation rule of steady state Nu number with Ra number.

    图 7  铸锭物理模型

    Figure 7.  Physical model of ingot.

    图 8  不考虑等轴晶运动时铸锭的凝固过程 (a) t = 2.0 s; (b) t = 4.5 s; (c) t = 4.6 s; (d) t = 4.8 s; (e) t = 5.2 s; (f) t = 5.6 s; (g) t = 6.0 s; (h) t = 7.0 s; (i) t = 10.0 s; (j) t = 18.0 s

    Figure 8.  Solidification process of ingot without considering the equiaxial crystal motion: (a) t = 2.0 s; (b) t = 4.5 s; (c) t = 4.6 s; (d) t = 4.8 s; (e) t = 5.2 s; (f) t = 5.6 s; (g) t = 6.0 s; (h) t = 7.0 s; (i) t = 10.0 s; (j) t = 18.0 s.

    图 9  考虑等轴晶运动的铸锭凝固过程 (a) t = 2.0 s; (b) t = 4.5 s; (c) t = 4.6 s; (d) t = 4.8 s; (e) t = 5.2 s; (f) t = 5.6 s; (g) t = 6.0 s; (h) t = 7.0 s; (i) t = 10.0 s; (j) t = 18.0 s

    Figure 9.  Solidification process of ingot considering equiaxial crystal motion: (a) t = 2.0 s; (b) t = 4.5 s; (c) t = 4.6 s; (d) t = 4.8 s; (e) t = 5.2 s; (f) t = 5.6 s; (g) t = 6.0 s; (h) t = 7.0 s; (i) t = 10.0 s; (j) t = 18.0 s.

    图 10  不同情况下铸锭完全凝固时的形貌 (a) 等轴晶运动; (b) 等轴晶不运动

    Figure 10.  Morphology of a fully solidified ingot in different cases: (a) Equiaxed grain motion; (b) equiaxed grain immobility.

    图 11  不同情况下铸锭完全凝固的溶质分布 (a) 等轴晶运动; (b) 等轴晶不运动

    Figure 11.  Solute distribution in the fully solidified ingot for different cases: (a) Equiaxed grain motion; (b) equiaxed grain immobility.

    图 12  等轴晶运动与否和实验结果的偏析程度对比

    Figure 12.  Comparison between the presence or absence of equiaxed crystal movement and the degree of segregation observed in experimental results.

    表 1  不同位置的${C_{\text{e}}}$与${D_{\text{e}}}$的取值方法

    Table 1.  Methods of taking values of ${C_{\text{e}}}$ and ${D_{\text{e}}}$ at different locations.

    液相固相界面界面与固相之间界面与液相之间
    ${C_{\text{e}}}$${C_{\text{l}}}$${C_{\text{s}}}/k$${C_{\text{l}}}$${C_{\text{l}}}$${C_{\text{l}}}$
    ${D_{\text{e}}}$${D_{\text{l}}}$${D_{\text{s}}}$${D_{\text{l}}}$${D_{\text{s}}}$${D_{\text{l}}}$
    DownLoad: CSV

    表 2  模拟用到的参数

    Table 2.  Parameters used for simulation.

    Physical parameter Value
    Solidus temperature, ${T_{\text{m}}}/K$ 1811.15
    Liquidus temperature, ${T_0}/K$ 1723.15
    Liquidus slope, ${m_{\text{l}}}/({{\mathrm{K}} {\cdot} {{\text{%}} ^{-1}}})$ –80.45
    Interface kinetics coefficient, ${\mu _{\text{k}}}/({1{0^{ - 3}}\;{\mathrm{m}} {\cdot} {{\mathrm{s}}^{ - 1}} {\cdot} {\mathrm{K}}})$ 2
    Kinetic anisotropy strength, ${\delta _{\text{k}}}$ 0.3
    Thermodynamic anisotropy, ${\delta _{\text{t}}}$ 0.3
    Liquid Viscosity, $\nu /({1{0^{ - 3}}\;{\mathrm{kg}} {\cdot} {{\mathrm{m}}^{ - 1}} {\cdot} {{\mathrm{s}}^{ - 1}}})$ 3.6
    Diffusivity in liquid, ${D_{\text{l}}}/( {{{10}^{ - 8}}\;{{\text{m}}^2} {\cdot} {{\text{s}}^{ - 1}}} )$ 2
    Diffusivity in solid, ${D_{\text{s}}}/( {{{10}^{ - 9}}\;{{\text{m}}^2} {\cdot} {{\text{s}}^{ - 1}}} )$ 1
    Partition coefficient, $k$ 0.36
    Average Gibbs-Tomson
    coefficient, $ {\bar \varGamma /( {{{10}^{ - 7}}\;{\text{m}} {\cdot} {\text{K}}} )}$
    1.9
    Specific heat capacity, ${C_{\text{p}}}/( {{\text{J}} {\cdot} {\text{k}}{{\text{g}}^{ - 1}} {\cdot} {{\text{K}}^{ - 1}}} )$ 455
    Convective heat transfer
    coefficient, $h/({\mathrm{W}} {\cdot} {{\mathrm{m}}^{ - 2}} {\cdot} {{\mathrm{K}}^{ - 1}})$
    600
    Thermal conductivity, $\lambda /({\text{W}} {\cdot} {{\text{m}}^{ - 1}} {\cdot} {{\text{K}}^{ - 1}})$ 30
    Thermal expansion coefficient, $ {\beta _{\text{T}}}/( {{{10}^{ - 4}}\;{{\mathrm{K}}^{ - 1}}} ) $ 2
    Solutal expansion coefficient, $ {\beta _{\text{c}}}/( {{{10}^{ - 2}} \;{{\text{%}} ^{ - 1}}} ) $ 1.1
    Latent heat, $L/( {{{10}^3}\;{\text{J}} {\cdot} {\text{k}}{{\text{g}}^{ - 1}}} )$ 269.55
    Density, $\rho /( {{\text{kg}} {\cdot} {{\text{m}}^{ - 3}}} )$ 7001
    DownLoad: CSV

    表 3  不同位置的平均浓度以及偏析程度

    Table 3.  Average concentration and segregation of index (SI) at different locations.

    运动0.2270.2570.2920.3090.3230.4410.2820.2890.351
    偏析/%–33.2–24.4–14.1–9.1–5.029.7–17.1–15.03.2%
    不运动0.2280.2780.2980.30.3410.3840.2780.2890.345
    偏析/%–32.9–18.2–12.4–11.80.312.9–18.2–15.01.5%
    DownLoad: CSV
  • [1]

    Qi X B, Chen Y, Kang X H, Li D Z, Gong T Z 2017 Sci Rep 7 45770Google Scholar

    [2]

    Rátkai L, Pusztai T, Gránásy L 2019 npj Comput. Mater. 5 113Google Scholar

    [3]

    张士杰, 王颖明, 王琦, 李晨宇, 李日 2021 物理学报 70 238101Google Scholar

    Zhang S J, Wang Y M, Wang Q, Li C Y, Li R 2021 Acta Phys. Sin. 70 238101Google Scholar

    [4]

    Sakane S, Takaki T, Ohno M, Shibuta Y, Aoki T 2020 Comput. Mater. Sci. 178 109639Google Scholar

    [5]

    Ren J K, Chen Y, Cao Y F, Sun M Y, Xu B, Li D Z 2020 J. Mater. Sci. Tech. 58 171Google Scholar

    [6]

    Yamanaka N, Sakane S, Takaki T 2021 Comput. Mater. Sci. 197 110658Google Scholar

    [7]

    Zhang S J, Zhu B F, Li Y B, Zhang Y, Li R 2024 Comput. Mater. Sci. 245 113308Google Scholar

    [8]

    Liu L, Pian S, Zhang Z, Bao Y C, Li R, Chen H J 2018 Comput. Mater. Sci. 146 9Google Scholar

    [9]

    Wang Q, Wang Y M, Zhang S J, Guo B X, Li C Y, Li R 2021 Crystals 11 1056Google Scholar

    [10]

    Sakane S, Aoki T, Takaki T 2022 Comput. Mater. Sci. 211 111542Google Scholar

    [11]

    Meng S X, Zhang A, Guo Z P, Wang Q G 2020 Comput. Mater. Sci. 184 109784Google Scholar

    [12]

    Takaki T 2023 IOP Conf. Ser. Mater. Sci. Eng. 1274 012009Google Scholar

    [13]

    Flemings M C, Mehrabian R, Nereo G E 1968 T. Metall. Soc. AIME 239 1449

    [14]

    Bennon W D, Incropera F P 1987 Int. J. Heat Mass Tran. 30 2161Google Scholar

    [15]

    Bennon W D, Incropera F P 1987 Int. J. Heat Mass Tran. 30 2171Google Scholar

    [16]

    Beckermann C, Viskanta R 1988 Physicochemical Hydrodynamics 10 195

    [17]

    Gu J P, Beckermann C 1999 Metall. Mater. Trans. A 30 1357Google Scholar

    [18]

    Wu M, Ludwig A, Kharicha A 2016 Appl. Math. Model. 41 102Google Scholar

    [19]

    Zhang Z, Bao Y, Liu L, Pian S, Li R 2018 Metall. Mater. Trans. A 49 2750Google Scholar

    [20]

    Zhang S, Li Y, Zhang S, Zhu B, Li R 2025 Int. J. Therm. Sci. 211 109737Google Scholar

    [21]

    Rappaz M, Thévoz P H 1987 Acta Metall. 35 2929Google Scholar

    [22]

    Zhu M F, Lee S Y, Hong C P 2004 Phys. Rev. E 69 061610Google Scholar

    [23]

    Sun D K, Zhu M F, Pan S Y, Yang C R, Raabe D 2011 Comput. Math. Appl. 61 3585Google Scholar

    [24]

    Zhu M, Stefanescu D 2007 Acta Mater. 55 1741Google Scholar

    [25]

    Wen B, Zhang C, Tu Y, Wang C, Fang H 2014 J. Comput. Phys. 266 161Google Scholar

    [26]

    Mei R, Yu D, Shyy W, Luo L S 2002 Phys. Rev. E 65 041203Google Scholar

    [27]

    Drummond J E, Tahir M I 1984 Int. J. Multiphase Flow 10 515Google Scholar

    [28]

    张照 2020 硕士学位论文 (天津: 河北工业大学)

    Zhang Z 2020 M. S. Thesis (Tianjin: Hebei University of Technology

    [29]

    Shan X 1997 Phys. Rev. E 55 2780Google Scholar

    [30]

    Clever R M, Busse F H 1974 J. Fluid Mech. 65 625Google Scholar

    [31]

    Wu M, Könözsy L, Ludwig A, Schützenhöfer W, Tanzer R 2008 Steel Res. Int. 79 637Google Scholar

    [32]

    Luo S, Wang W, Zhu M 2018 Int. J. Heat Mass Tran. 116 940Google Scholar

    [33]

    Ge H H, Li J, Guo Q T, Ren F L, Xia M X, Yao J H, Li J G 2021 Metall. Mater. Trans. B 52 2992Google Scholar

  • [1] Zuo Juan-Li, Yang Hong, Wei Bing-Qian, Hou Jing-Ming, Zhang Kai. Numerical simulation of gas-liquid two-phase flow in gas lift system. Acta Physica Sinica, 2020, 69(6): 064705. doi: 10.7498/aps.69.20191755
    [2] Liu Yang, Han Yan-Long, Jia Fu-Guo, Yao Li-Na, Wang Hui, Shi Yu-Fei. Numerical simulation on stirring motion and mixing characteristics of ellipsoid particles. Acta Physica Sinica, 2015, 64(11): 114501. doi: 10.7498/aps.64.114501
    [3] Wang Zhe, Wang Fa-Zhan, Wang Xin, He Yin-Hua, Ma Shan, Wu Zhen. Three-dimensional modelling and numerical simulation on segregation during Fe-Pb alloy solidification in a multiphase system. Acta Physica Sinica, 2014, 63(7): 076101. doi: 10.7498/aps.63.076101
    [4] Li Ri, Wang Jian, Zhou Li-Ming, Pan Hong. The reliability analysis of using the volume averaging method to simulate the solidification process in a ingot. Acta Physica Sinica, 2014, 63(12): 128103. doi: 10.7498/aps.63.128103
    [5] Wang Xin-Xin, Fan Ding, Huang Jian-Kang, Huang Yong. Numerical simulation of coupled arc in double electrode tungsten inert gas welding. Acta Physica Sinica, 2013, 62(22): 228101. doi: 10.7498/aps.62.228101
    [6] Chen Shi, Wang Hui, Shen Sheng-Qiang, Liang Gang-Tao. The drop oscillation model and the comparison with the numerical simulations. Acta Physica Sinica, 2013, 62(20): 204702. doi: 10.7498/aps.62.204702
    [7] Jia Yu-Kun, Yang Shi-E, Guo Qiao-Neng, Chen Yong-Sheng, Gao Xiao-Yong, Gu Jin-Hua, Lu Jing-Xiao. Optimal design of light trapping structure for broadband absorption enhancement in amorphous silicon solar cell. Acta Physica Sinica, 2013, 62(24): 247801. doi: 10.7498/aps.62.247801
    [8] Zhao La-La, Liu Chu-Sheng, Yan Jun-Xia, Jiang Xiao-Wei, Zhu Yan. Numerical simulation of particle segregation behavior in different vibration modes. Acta Physica Sinica, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [9] Zhu Chang-Sheng, Wang Jun-Wei, Wang Zhi-Ping, Feng Li. Denedritic growth in forced flow using the phase-field simulation. Acta Physica Sinica, 2010, 59(10): 7417-7423. doi: 10.7498/aps.59.7417
    [10] Wang Ke-Sheng, Liu Quan-Kun, Zhang De-Yuan. Numerical simulation of the tribological behaviour of the serial coatings of D2 steel. Acta Physica Sinica, 2009, 58(13): 89-S93. doi: 10.7498/aps.58.89
    [11] Song Nan-Nan, Wu Shi-Ping, Luan Yi-Kun, Kang Xiu-Hong, Li Dian-Zhong. Numerical simulation and hydraulic experiment of horizontal centrifugal casting. Acta Physica Sinica, 2009, 58(13): 112-S117. doi: 10.7498/aps.58.112
    [12] Cai Li-Bing, Wang Jian-Guo. Numerical simulation of the breakdown on HPM dielectric surface. Acta Physica Sinica, 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [13] Liu Dong-Rong, Sang Bao-Guang, Kang Xiu-Hong, Li Dian-Zhong. Modelling of macrosegregation in large steel ingot with considering solid movement. Acta Physica Sinica, 2009, 58(13): 104-S111. doi: 10.7498/aps.58.104
    [14] Yang Yu-Juan, Wang Jin-Cheng, Zhang Yu-Xiang, Zhu Yao-Chan, Yang Gen-Cang. Investigation on the effect of lamellar thickness on three-dimensional lamellar eutectic growth by multi-phase field model. Acta Physica Sinica, 2008, 57(8): 5290-5295. doi: 10.7498/aps.57.5290
    [15] Jiang Hui-Feng, Zhang Qing-Chuan, Chen Xue-Dong, Fan Zhi-Chao, Chen Zhong-Jia, Wu Xiao-Ping. Numerical simulation of the dynamic interactions between dislocation and solute atoms. Acta Physica Sinica, 2007, 56(6): 3388-3392. doi: 10.7498/aps.56.3388
    [16] Lu Yu-Hua, Zhan Jie-Min. Three-dimensional numerical simulation of thermosolutal convection in enclosures using lattice Boltzmann method. Acta Physica Sinica, 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [17] Zhu Chang-Sheng, Wang Zhi-Ping, Jing Tao, Xiao Rong-Zhen. Numerical simulation of solute segregation patterns for a binary alloy using phase-field approach. Acta Physica Sinica, 2006, 55(3): 1502-1507. doi: 10.7498/aps.55.1502
    [18] Zhang Yuan-Tao, Wang De-Zhen, Wang Yan-Hui. Numerical simulation of filamentary discharge controlled by dielectric barrier at atmospheric pressure. Acta Physica Sinica, 2005, 54(10): 4808-4815. doi: 10.7498/aps.54.4808
    [19] Ding Bo-Jiang, Kuang Guang-Li, Liu Yue-Xiu, Shen Wei-Ci, Yu Jia-Wen, Shi Yao-Jiang. . Acta Physica Sinica, 2002, 51(11): 2556-2561. doi: 10.7498/aps.51.2556
    [20] YU YAN-MEI, YANG GEN-CANG, ZHAO DA-WEN, Lü YI-LI, A. KARMA, C. BECKERMANN. NUMERICAL SIMULATION OF DENDRITIC GROWTH IN UNDERCOOLED MELT USING PHASE-FIELD APPROACH. Acta Physica Sinica, 2001, 50(12): 2423-2428. doi: 10.7498/aps.50.2423
Metrics
  • Abstract views:  448
  • PDF Downloads:  6
  • Cited By: 0
Publishing process
  • Received Date:  09 December 2024
  • Accepted Date:  19 February 2025
  • Available Online:  18 March 2025
  • Published Online:  20 May 2025

/

返回文章
返回