Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Calculation of triggered lightning current and electromagnetic fields based on spectral diagnosis and finite-difference time-domain method

SUO Yuhang SHEN Xiaozhi QI Qi ZHANG Huaming

Citation:

Calculation of triggered lightning current and electromagnetic fields based on spectral diagnosis and finite-difference time-domain method

SUO Yuhang, SHEN Xiaozhi, QI Qi, ZHANG Huaming
cstr: 32037.14.aps.74.20250448
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The channel plasma characteristics of an artificially triggered lightning in Guangdong, China, are analyzed using slit-free spectroscopy technology. Based on spectral diagnostic methods, the maximum and minimum values of the triggered lightning channel current are determined to be about 30.9 kA and 25.6 kA (minimum), respectively, and the current is simulated using a modified transmission line model with linear current decay (MTLL). To investigate the electric field distribution, the finite-difference time-domain (FDTD) method and transmission line (TL) model are employed. At a distance of 58 m, assuming a return stroke velocity of 1.3 × 108 m/s, the TL-predicted radiation electric field deviates from experimental electric field, but is very close to the FDTD-simulation of the vertical electric field. Moreover, the analyses of magnetic fields at 58 m, 90 m, and 1.6 km are compared using FDTD simulations, dipole approximation, and charge magnetic field limit (CMFL) estimation. The discrepancies between calculated value and experimental values appear at 58 m and 90 m, which may be due to the near-field interference and measurement limitation. However, they become small at 1.6 km. This work is helpful for the study of lightning electromagnetic field properties and spectral diagnosis.
      Corresponding author: SHEN Xiaozhi, shenxz@tjnu.edu.cn ; ZHANG Huaming, zhanghuaming980@163.com
    • Funds: Project supported by the Open Research Program of Key Laboratory of Lightning Protection, China Meteorological Administration (Grant Nos. 2024KELL-B012, 2022LASWB21) and the Lightning Observation Research Project of Wutai Mountain Cloud Physics Base, Shanxi Meteorological Bureau, China (Grant No. SXKZDDW20217103).
    [1]

    An Y Y, Shen X Z, Yuan P, Wu Z W 2023 Appl. Phys. Lett. 133 17Google Scholar

    [2]

    Cai L, Li J, Wang J G, Zhou M, Xu F, Li Q X 2020 IEEE Trans. Electromagn. Compat. 63 811

    [3]

    Dong C X, Yuan P, Cen J Y, Wang X J, Mu Y L 2016 Atmos. Res. 178 1Google Scholar

    [4]

    Yuan Y M, Shen X Z, Wang H Y, Zhang H M, Zhang Y J, Wang C M, An Y Y, Su M L 2022 Phys. Lett. A 452 128445Google Scholar

    [5]

    Zhang Q L, Qie X S, Wang Z H, Zhang T L, Yang J 2009 Radio Sci. 44 1Google Scholar

    [6]

    Zhang Y J, Yang S J, Lu W T, Zheng D, Dong W S, Li B, Chen S D, Zhang Y, Chen L W 2014 Atmos. Res. 135 330

    [7]

    Cai L, Li J, Wang J G, Zhou M, Li Q X, Fan Y D 2021 High Volt. 6 337Google Scholar

    [8]

    Yang J, Qie X S, Zhang G S, Wang H B 2008 Radio Sci. 43 1

    [9]

    Pokharel R K, Ishii M, Baba Y 2003 IEEE Trans. Electromagn. Compat. 45 651Google Scholar

    [10]

    Shen X Z, Su M L, Zhang H M, Gao Z G, Xu Y, Wei F 2024 Phys. Plasmas 31 103508Google Scholar

    [11]

    Rubenstein M, Rachidi F, Uman M A, Thottappillil R, Rakov V A Nucci C A 1995 J. Geophys. Ress D: Atmos. 100 8863Google Scholar

    [12]

    Schoene J, Uman M A, Rakov V A, Kodali V, Rambo K J, Schnetzer G H 2003 J. Geophys. Res. D: Atmos. 108(D6) 4192Google Scholar

    [13]

    Li X, Lu G P, Fan Y F, Jiang R B, Zhang H B, Li D S, Liu M Y, Wang Y P, Ren H 2018 J. Geophys. Res. D: Atmos. 124 3168Google Scholar

    [14]

    Yee K 1966 IEEE Trans. Antennas Propag. 14 302Google Scholar

    [15]

    Cheng L, Zhu G X, Liu G N, Zhu L Q 2020 Mater. Res. Express 7 125009Google Scholar

    [16]

    Piltyay S, Bulashenko A, Herhil Y, Bulashenko O 2021 IEEE 2nd International Conference on Advanced Trends in Information Theory Kyiv, Ukraine, November 25–27 2020, pp357–363

    [17]

    Su M L, Shen X Z, Wang H Y, Zhang H M, Yuan Y M, An Y Y 2023 Chem. Phys. Lett. 826 140664Google Scholar

    [18]

    Shen X Z, Li J G, Jönsson P, Wang J G 2015 Astrophys. J. 801 129Google Scholar

    [19]

    申晓志, 袁萍, 李冀光, 董晨钟, 颉录有, 师应龙 2007 物理学报 10 5715Google Scholar

    Shen X Z, Yuan P, Li J G, Dong C Z, Ji L L, Shi Y L 2007 Acta Phys. Sin. 10 5715Google Scholar

    [20]

    申晓志, 袁萍, 王杰, 郭逸潇, 乔红贞, 赵学燕 2008 物理学报 57 4066Google Scholar

    Shen X Z, Yuan P, Wang J, Guo X Y, Qiao H Z, Zhao X Y 2008 Acta Phys. Sin. 57 4066Google Scholar

    [21]

    Shen X Z, Yuan P, Liu J 2010 Chin. Phys. B 19 053101Google Scholar

    [22]

    Shen X Z, Liu J, Zhou F Y 2016 Mon. Not. R. Astron. Soc. 462 1203Google Scholar

    [23]

    Shen X Z, Liu J, Sang C C, Jönsson P 2018 Phys. Rev. A 97 012510Google Scholar

    [24]

    Zhang X Y, Shen X Z, Yan P, Feng H 2020 Phys. Rev. A 102 042824Google Scholar

    [25]

    邱德仁 2002 原子光谱分析(上海: 复旦大学出版社) 第63—64页

    Qiu D R 2002 Atomic Spectrometry Analysis (Shanghai: Fudan University Press) pp63–64

    [26]

    Liu J, Shen X Z, Wang K, Sang C C 2020 J. Chem. Phys. 152 204303Google Scholar

    [27]

    D’angola A, Colonna G, Gorse C, Capitell M 2011 Eur. Phys. J. D 65 453Google Scholar

    [28]

    Devoto R S 1967 Phys. Fluids 10 2105Google Scholar

    [29]

    D’angola A, Colonna G, Gorse C, Capitell M 2008 Eur. Phys. J. D 46 129Google Scholar

    [30]

    Larsson A, Lalande P, Bondiou-Clergerie A, Lalande P, Delannoy A 2000 J. Phys. D: Appl. Phys. 33 1866Google Scholar

    [31]

    马文蔚, 周雨清, 解希顺 2016 物理学教程(下册) (北京: 高等教育出版社) 第49页

    Ma W W, Zhou Y Q, Xie X S 2016 A Course in Physics (Vol. 2) (Beijing: Higher Education Press) p49

    [32]

    Rakov V A 1998 J. Geophys. Res. D: Atmos. 103(D2) 1879

    [33]

    Yang C, Zhou B 2004 IEEE IEEE Trans. Electromagn. Compat. 46 133Google Scholar

    [34]

    Rakov V A 1997 Proc. 12th Int. Zurich Symp. Electromagn. Compat Gainesville, FL, USA February 18–20, 1997 pp59–64

    [35]

    Bruce C E R, Golde R H 1941 J. Inst. Electr. Eng. -Part II: Power Eng. 88 487

    [36]

    Uman M A, McLain D K 1969 J. Geophys. Res. 74 6899Google Scholar

    [37]

    Heidler F 1985 6th Symposium and Technical Exhibition on Electromagnetic Compatibility Zurich, Switzerland March 5–7, 1985 pp157–162

    [38]

    Diendorfer G, Uman M 1990 J. Geophys. Res. D: Atmos. 95 13621Google Scholar

    [39]

    Shen X, Xu Y, Liu M, Zhang H M, Wang H Y 2025 J. Opt. Soc. Am. B: Opt. Phys. 42 773Google Scholar

    [40]

    Rubinstein M, Uman M A 1989 IEEE Trans. Electromagn. Compat. 31 183Google Scholar

    [41]

    Cai L, Hu Q, Wang J G, Zou X, Li Q X, Fan Y D 2021 J. Electrostat. 109 103537Google Scholar

    [42]

    Wei F, Shen X Z, Yuan P, An T T, An Y Y, Su M L 2024 J. Opt. Soc. Am. B: Opt. Phys. 41 2033Google Scholar

    [43]

    Kramida A, Ralchenko Y, Reader J, NIST ASD Team (2024) NIST Atomic Spectra Database (Ver. 5.12) [Online]. [2025, April 1]. National Institute of Standards and Technology, Gaithersburg, MD.

    [44]

    Qie X S, Zhang Q L, Zhou Y J, Feng G L, Zhang T L, Yang J, Kong X Z, Xiao Q F, Wu S J 2007 Sci. China Earth Sci. 50 1241Google Scholar

  • 图 1  (a) 触发闪电测量装置示意图; (b) 触发闪电的实验场地; (c) 触发闪电通道示意图; (d) 数值计算模型. $\otimes $表示垂直指向纸上

    Figure 1.  (a) Schematic diagram of triggering lightning measurement device; (b) the experimental site; (c) schematic diagram of lightning channel; (d) numerical calculation model. $\otimes $: pointing vertically towards the paper.

    图 2  2022年7月5日在中国广东拍摄的某次触发闪电的光谱 (a) 触发闪电通道和衍射光谱; (b) 为触发闪电的分析光谱

    Figure 2.  The spectrum of a triggered lightning captured on July 5th, 2022 in Guangdong, China: (a) Trigger lightning channel and its diffraction spectra; (b) spectral analysis for triggering lightning.

    图 3  电流测量过程. X, Y, Z轴对应于电导率、通道半径、电流. 通道半径和电导率的交点位置对应的电流即为测量电流. Exp.Shen 2024引自文献[9]

    Figure 3.  Measurement process of Current. X, Y and Z axes correspond to electron conductivity, channel radius, and current. The current corresponding to the intersection of channel radius and electron conductivity is the measured current. Exp. Shen 2024 cites from Ref.[9].

    图 4  MTLL电流模拟. F190611124401和Flash063002为两次实验电流. Exp.Cai引自文献[2,41]

    Figure 4.  MTLL numerical simulation. F190611124401 and Flash063002 are two measurements. Exp. Cai cites from Ref. [2,41]

    图 5  (a), (b) FDTD模拟电场与实验电场对比; (c) $ {E}_{r} $分布; (d)电场对比. Exp.Cai 2021引自文献[41]

    Figure 5.  (a), (b) Comparison between FDTD simulated electric field and the experimental electric field; (c) Er distribution; (d) electric field comparison. Exp. Cai 2021 quoted from Ref. [41].

    图 6  (a), (b), (c) FDTD模拟磁场、偶极子方法计算磁场、电荷-磁场、实验磁场; (d) 磁场数据. Exp.Cai 2020引自文献[2]

    Figure 6.  (a), (b), (c) FDTD simulation of magnetic field, dipole method for calculating magnetic field, charge magnetic field, and (d) experimental magnetic field. Exp. Cai 2020 cited from reference [2].

    表 2  基于实验电流得到的传输线模型和FDTD模拟的电场

    Table 2.  The electric fields for the transmission line model and FDTD simulation based on experimental currents.

    峰值电流/kA 距离/m 电场/(kV·m–1)
    类型 $i_{\text{p}}^{{\text{min}}}$ $i_{\text{p}}^{{\text{max}}}$ D TL model FDTD
    Erad (v1)c Erad (v2)c Ez Er
    本文工作 25.6 30.9 38 18.2—21.9 33.6—40.7
    58 11.9—14.4 22.0—26.7 10.1—12.0 0.9—1.0
    78 8.8—10.7 16.4—19.8
    90 7.7—9.2 14.2—17.2
    102 6.7—8.2 12.5—15.1
    1000 0.4—0.7 1.3—1.5
    1600 0.4—0.5 0.8—0.9
    2200 0.3—0.4 0.6—0.7
    Cai 2021a 12.0 23.6 58 12.6—35.7
    Qie 2007b 11.9 60 18.0
    注: a, b 引自文献[41]与[44]. c $v_1= 1.3\times10^8 $ m/s; d $v_2= 2.5\times10^8 $ m/s.
    DownLoad: CSV

    表 1  触发闪电特征谱线的光谱参数[43]

    Table 1.  Spectral parameters of characteristic spectral lines for triggered lightning[43].

    波长/nm 跃迁率 $ {E}_{k}/{{\mathrm{c}}{\mathrm{m}}}^{-1} $ 谱线跃迁
    上能级 下能级
    N I 493.5 1.76×106 106477 2s22p2(3P)4p $\rm{}^2P^\circ_{1/2}$ 2s22p2(3P)3s 2P3/2
    N I 528.1 2.45×105 107037 2s22p2(3P)4p $\rm {}^4P^\circ_{1/2} $ 2s2p4 4P5/2
    N II 417.6 1.21×108 210732 2s22p4f F(5/2)3 2s22p3d $\rm{}^1D^\circ_2 $
    N II 447.8 6.44×106 188909 2s22p3d $\rm{}^3P^\circ_1 $ 2s22p3d $\rm{}^1D^\circ_2 $
    N II 498.7 6.98×107 188937 2s22p3d $\rm{}^3P^\circ_0 $ 2s22p3p 3S1
    N II 524.1 6.2×105 221246 2s22p5d $\rm{}^1P^\circ_1 $ 2s22p4p 1P1
    N II 568.0 1.78×107 166521 2s22p3p 3D1 2s22p3s $\rm{}^3P^\circ_2 $
    DownLoad: CSV

    表 3  FDTD模拟、偶极子方法和电荷-磁场极限估算得到的磁场

    Table 3.  Magnetic field obtained from FDTD simulation, dipole method, and charge-magnetic field limit estimation.

    实验峰值
    电流/kA
    距离/m 磁场/μT
    类型 $i_{\text{p}}^{{\text{min}}}$ $i_{\text{p}}^{{\text{max}}}$ D FDTD 偶极子
    方法
    BQ 估算
    本文
    工作
    25.6 30.9 38 95.3—115.3
    58 82.6—98.5 69.8—84.3 62.4—75.5
    78 46.4—56.2
    90 68.1—77.0 44.6—53.8 40.2—48.7
    102 35.5—42.9
    1000 3.6—4.4
    1600 2.3—2.8 2.3—2.7 2.3—2.8
    2200 1.6—2.0
    实验测量
    Cai[2] 13.0 58 137.8
    90 84.9
    1600 1.4
    Qie[8] 28.1 60 66.3
    DownLoad: CSV
  • [1]

    An Y Y, Shen X Z, Yuan P, Wu Z W 2023 Appl. Phys. Lett. 133 17Google Scholar

    [2]

    Cai L, Li J, Wang J G, Zhou M, Xu F, Li Q X 2020 IEEE Trans. Electromagn. Compat. 63 811

    [3]

    Dong C X, Yuan P, Cen J Y, Wang X J, Mu Y L 2016 Atmos. Res. 178 1Google Scholar

    [4]

    Yuan Y M, Shen X Z, Wang H Y, Zhang H M, Zhang Y J, Wang C M, An Y Y, Su M L 2022 Phys. Lett. A 452 128445Google Scholar

    [5]

    Zhang Q L, Qie X S, Wang Z H, Zhang T L, Yang J 2009 Radio Sci. 44 1Google Scholar

    [6]

    Zhang Y J, Yang S J, Lu W T, Zheng D, Dong W S, Li B, Chen S D, Zhang Y, Chen L W 2014 Atmos. Res. 135 330

    [7]

    Cai L, Li J, Wang J G, Zhou M, Li Q X, Fan Y D 2021 High Volt. 6 337Google Scholar

    [8]

    Yang J, Qie X S, Zhang G S, Wang H B 2008 Radio Sci. 43 1

    [9]

    Pokharel R K, Ishii M, Baba Y 2003 IEEE Trans. Electromagn. Compat. 45 651Google Scholar

    [10]

    Shen X Z, Su M L, Zhang H M, Gao Z G, Xu Y, Wei F 2024 Phys. Plasmas 31 103508Google Scholar

    [11]

    Rubenstein M, Rachidi F, Uman M A, Thottappillil R, Rakov V A Nucci C A 1995 J. Geophys. Ress D: Atmos. 100 8863Google Scholar

    [12]

    Schoene J, Uman M A, Rakov V A, Kodali V, Rambo K J, Schnetzer G H 2003 J. Geophys. Res. D: Atmos. 108(D6) 4192Google Scholar

    [13]

    Li X, Lu G P, Fan Y F, Jiang R B, Zhang H B, Li D S, Liu M Y, Wang Y P, Ren H 2018 J. Geophys. Res. D: Atmos. 124 3168Google Scholar

    [14]

    Yee K 1966 IEEE Trans. Antennas Propag. 14 302Google Scholar

    [15]

    Cheng L, Zhu G X, Liu G N, Zhu L Q 2020 Mater. Res. Express 7 125009Google Scholar

    [16]

    Piltyay S, Bulashenko A, Herhil Y, Bulashenko O 2021 IEEE 2nd International Conference on Advanced Trends in Information Theory Kyiv, Ukraine, November 25–27 2020, pp357–363

    [17]

    Su M L, Shen X Z, Wang H Y, Zhang H M, Yuan Y M, An Y Y 2023 Chem. Phys. Lett. 826 140664Google Scholar

    [18]

    Shen X Z, Li J G, Jönsson P, Wang J G 2015 Astrophys. J. 801 129Google Scholar

    [19]

    申晓志, 袁萍, 李冀光, 董晨钟, 颉录有, 师应龙 2007 物理学报 10 5715Google Scholar

    Shen X Z, Yuan P, Li J G, Dong C Z, Ji L L, Shi Y L 2007 Acta Phys. Sin. 10 5715Google Scholar

    [20]

    申晓志, 袁萍, 王杰, 郭逸潇, 乔红贞, 赵学燕 2008 物理学报 57 4066Google Scholar

    Shen X Z, Yuan P, Wang J, Guo X Y, Qiao H Z, Zhao X Y 2008 Acta Phys. Sin. 57 4066Google Scholar

    [21]

    Shen X Z, Yuan P, Liu J 2010 Chin. Phys. B 19 053101Google Scholar

    [22]

    Shen X Z, Liu J, Zhou F Y 2016 Mon. Not. R. Astron. Soc. 462 1203Google Scholar

    [23]

    Shen X Z, Liu J, Sang C C, Jönsson P 2018 Phys. Rev. A 97 012510Google Scholar

    [24]

    Zhang X Y, Shen X Z, Yan P, Feng H 2020 Phys. Rev. A 102 042824Google Scholar

    [25]

    邱德仁 2002 原子光谱分析(上海: 复旦大学出版社) 第63—64页

    Qiu D R 2002 Atomic Spectrometry Analysis (Shanghai: Fudan University Press) pp63–64

    [26]

    Liu J, Shen X Z, Wang K, Sang C C 2020 J. Chem. Phys. 152 204303Google Scholar

    [27]

    D’angola A, Colonna G, Gorse C, Capitell M 2011 Eur. Phys. J. D 65 453Google Scholar

    [28]

    Devoto R S 1967 Phys. Fluids 10 2105Google Scholar

    [29]

    D’angola A, Colonna G, Gorse C, Capitell M 2008 Eur. Phys. J. D 46 129Google Scholar

    [30]

    Larsson A, Lalande P, Bondiou-Clergerie A, Lalande P, Delannoy A 2000 J. Phys. D: Appl. Phys. 33 1866Google Scholar

    [31]

    马文蔚, 周雨清, 解希顺 2016 物理学教程(下册) (北京: 高等教育出版社) 第49页

    Ma W W, Zhou Y Q, Xie X S 2016 A Course in Physics (Vol. 2) (Beijing: Higher Education Press) p49

    [32]

    Rakov V A 1998 J. Geophys. Res. D: Atmos. 103(D2) 1879

    [33]

    Yang C, Zhou B 2004 IEEE IEEE Trans. Electromagn. Compat. 46 133Google Scholar

    [34]

    Rakov V A 1997 Proc. 12th Int. Zurich Symp. Electromagn. Compat Gainesville, FL, USA February 18–20, 1997 pp59–64

    [35]

    Bruce C E R, Golde R H 1941 J. Inst. Electr. Eng. -Part II: Power Eng. 88 487

    [36]

    Uman M A, McLain D K 1969 J. Geophys. Res. 74 6899Google Scholar

    [37]

    Heidler F 1985 6th Symposium and Technical Exhibition on Electromagnetic Compatibility Zurich, Switzerland March 5–7, 1985 pp157–162

    [38]

    Diendorfer G, Uman M 1990 J. Geophys. Res. D: Atmos. 95 13621Google Scholar

    [39]

    Shen X, Xu Y, Liu M, Zhang H M, Wang H Y 2025 J. Opt. Soc. Am. B: Opt. Phys. 42 773Google Scholar

    [40]

    Rubinstein M, Uman M A 1989 IEEE Trans. Electromagn. Compat. 31 183Google Scholar

    [41]

    Cai L, Hu Q, Wang J G, Zou X, Li Q X, Fan Y D 2021 J. Electrostat. 109 103537Google Scholar

    [42]

    Wei F, Shen X Z, Yuan P, An T T, An Y Y, Su M L 2024 J. Opt. Soc. Am. B: Opt. Phys. 41 2033Google Scholar

    [43]

    Kramida A, Ralchenko Y, Reader J, NIST ASD Team (2024) NIST Atomic Spectra Database (Ver. 5.12) [Online]. [2025, April 1]. National Institute of Standards and Technology, Gaithersburg, MD.

    [44]

    Qie X S, Zhang Q L, Zhou Y J, Feng G L, Zhang T L, Yang J, Kong X Z, Xiao Q F, Wu S J 2007 Sci. China Earth Sci. 50 1241Google Scholar

  • [1] TIAN Wenjing, YANG Zongyu, XU Min, LONG Ting, HE Xiaoxue, KE Rui, YANG Shuosu, YU Deliang, SHI Zhongbing, GAO Zhe. Rapid analysis model and extrapolation method of neural network in spectral diagnostic. Acta Physica Sinica, 2025, 74(7): 078901. doi: 10.7498/aps.74.20241739
    [2] Shen Yuan-Yi, Lei Peng, Wang Xin-Bing, Zuo Du-Luo. Ar-Kr resonance energy transfer in He/Ar/Kr optically pumped rare gas laser medium. Acta Physica Sinica, 2023, 72(19): 195201. doi: 10.7498/aps.72.20230956
    [3] Lü Cheng-Ye, Chen Ying-Wei, Xie Mu-Ting, Li Xue-Yang, Yu Hong-Yu, Zhong Yang, Xiang Hong-Jun. First-principles calculation method for periodic system under external electromagnetic field. Acta Physica Sinica, 2023, 72(23): 237102. doi: 10.7498/aps.72.20231313
    [4] Liu Guo-Rong, Zhu Wei-Jun, Chu Run-Tong, Wang Wei, Yuan Ping, An Ting-Ting, Wan Rui-Bin, Sun Dui-Xiong, Ma Yun-Yun, Guo Zhi-Yan. Diagnosis of lightning return stroke channel temperature according to different band spectra. Acta Physica Sinica, 2022, 71(10): 109201. doi: 10.7498/aps.71.20211673
    [5] Ye Zhi-Hong, Zhang Jie, Zhou Jian-Jian, Gou Dan. Time domain hybrid method for coupling analysis of multi-conductor transmission lines on the lossy dielectric layer excited by ambient wave. Acta Physica Sinica, 2020, 69(6): 060701. doi: 10.7498/aps.69.20191214
    [6] Li Shu-Lei, Qiu Shi, Shi Li-Hua, Li Yun, Duan Yan-Tao. Broadband very high frequency localization of lightning radiation sources based on orthogonal propagator method. Acta Physica Sinica, 2019, 68(16): 165202. doi: 10.7498/aps.68.20190522
    [7] Liang Yi-Han, Hu Guang-Yue, Yuan Peng, Wang Yu-Lin, Zhao Bin, Song Fa-Lun, Lu Quan-Ming, Zheng Jian. Temporal evolutions of the plasma density and temperature of laser-produced plasma expansion in an external transverse magnetic field. Acta Physica Sinica, 2015, 64(12): 125204. doi: 10.7498/aps.64.125204
    [8] Wang Fei, Wei Bing, Yang Qian, Li Lin-Qian. Newmark algorithm in the finite-difference time-domain analysis of ferrite magnetized in an arbitrary direction. Acta Physica Sinica, 2014, 63(16): 164101. doi: 10.7498/aps.63.164101
    [9] Wang Fei, Wei Bing, Li Lin-Qian. Newmark method for finite-difference time-domain modeling of wave propagation in frequency-dispersive medium. Acta Physica Sinica, 2014, 63(10): 104101. doi: 10.7498/aps.63.104101
    [10] Yang Li-Xia, Ma Hui, Shi Wei-Dong, Shi Li-Juan, Yu Ping-Ping. Finite difference time domain analysis on electromagnetic scattering characteristic of plasma thin layer based on surface impedance boundary condition method. Acta Physica Sinica, 2013, 62(3): 034102. doi: 10.7498/aps.62.034102
    [11] Wang Fei, Wei Bing. Semi-analytical recursive convolution algorithm in the finite-difference time domain analysis of anisotropic dispersive medium. Acta Physica Sinica, 2013, 62(4): 044101. doi: 10.7498/aps.62.044101
    [12] Wang Fei, Wei Bing. Z-transform algorithm in the finite-difference time domain analysis of ferrite subject to an arbitrary direction of external magnetic field. Acta Physica Sinica, 2013, 62(8): 084106. doi: 10.7498/aps.62.084106
    [13] Wang Cai-Xia, Qie Xiu-Shu, Jiang Ru-Bin, Yang Jing. Propagating properties of a upward positive leader in a negative triggered lightning. Acta Physica Sinica, 2012, 61(3): 039203. doi: 10.7498/aps.61.039203
    [14] Jiang Ru-Bin, Qie Xiu-Shu, Wang Cai-Xia, Yang Jing, Zhang Qi-Lin, Liu Ming-Yuan, Wang Jun-Fang, Liu Dong-Xia, Pan Lun-Xiang. Lightning M-components with peak currents of kilo amperes and their mechanism. Acta Physica Sinica, 2011, 60(7): 079201. doi: 10.7498/aps.60.079201
    [15] Yang Li-Xia, Xie Ying-Tao, Kong Wa, Yu Ping-Ping, Wang Gang. A novel finite-difference time-domain scheme for electromagnetic scattering by stratified anisotropic plasma under oblique incidence condition. Acta Physica Sinica, 2010, 59(9): 6089-6095. doi: 10.7498/aps.59.6089
    [16] Zhao Yang, Qie Xiu-Shu, Kong Xiang-Zhen, Zhang Guang-Shu, Zhang Tong, Yang Jing, Feng Gui-Li, Zhang Qi-Lin, Wang Dong-Fang. Analysis on the parameters of the current waveforms of triggered lightning. Acta Physica Sinica, 2009, 58(9): 6616-6626. doi: 10.7498/aps.58.6616
    [17] Yang Li-Xia, Ge De-Biao, Zhao Yue-Hua, Wang Gang, Yan Shu. A direct discrete-finite-difference time-domain implementation of electromagnetic scattering by magnetized ferrite medium. Acta Physica Sinica, 2008, 57(5): 2936-2940. doi: 10.7498/aps.57.2936
    [18] Yang Li-Xia, Ge De-Biao, Wei Bing. Three-dimensional finite-difference time-domain implementation for anisotropic dispersive medium using recursive convolution method. Acta Physica Sinica, 2007, 56(8): 4509-4514. doi: 10.7498/aps.56.4509
    [19] A recursive convolution-finite-difference time-domain implementation of electromagnetic scattering by magnetized ferrite medium. Acta Physica Sinica, 2007, 56(12): 6937-6944. doi: 10.7498/aps.56.6937
    [20] WU QI-XUE. DOUBLE-WAVE DESCRIPTION OF THE MOTION OF SPINNING ELECTRON IN BOTH ELECTROMAGNETIC FIELD AND TWO-DIMENSIONAL HARMONIC OSCILLATOR POTENTIAL FIELD. Acta Physica Sinica, 2000, 49(11): 2118-2122. doi: 10.7498/aps.49.2118
Metrics
  • Abstract views:  411
  • PDF Downloads:  8
  • Cited By: 0
Publishing process
  • Received Date:  06 April 2025
  • Accepted Date:  01 May 2025
  • Available Online:  13 May 2025
  • Published Online:  20 July 2025
  • /

    返回文章
    返回