Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Baryonic non-leptonic decays in covariant chiral effective field theory

ZHANG Wei YANG Jifeng

Citation:

Baryonic non-leptonic decays in covariant chiral effective field theory

ZHANG Wei, YANG Jifeng
cstr: 32037.14.aps.74.20250639
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • An unresolved issue in the study of baryon non-leptonic decays is that the theoretical values describing the s- and p-wave amplitudes of such decays cannot simultaneously accord well with experimental values. Compared with previous literature, this paper adopts the covariant chiral effective theory framework and calculates the one-loop corrections to the s- and p-wave amplitudes by using the extended minimal subtraction (EMS) scheme, and also takes into account the contributions from intermediate pion states that are neglected in previous studies (the contributions from intermediate decuplet states are not considered here). Unlike infrared regularization and the extended on-shell subtraction scheme, EMS is easier to implement and also avoids over-subtraction. Apart from the typical chiral logarithmic term mslnms obtained in heavy-baryon formalism, the covariant calculation retains many non-local contributions that are not negligible. These non-local contributions vary with loop diagrams and intermediate states, making the complete covariant results significantly different from those from the simple chiral logarithmic structures in heavy-baryon formalism, which may alleviate the tension between the s- and p-wave components of the decay amplitudes. Subsequent numerical analysis confirms this conjecture. Two approaches are adopted to obtain covariant theoretical predictions: s-wave fitting and p-wave fitting. According to the fitted predictions and chi-squares of fitness, the s-wave fitting yields s-wave predictions slightly inferior to those under heavy-baryon formalism, but the resulting p-wave predictions are considerably improved compared with the heavy-baryon formalism predictions. The p-wave fitting produces p-wave predictions closer to experimental values, while the heavy-baryon predictions differ significantly from the experimental values. The resulting s-wave predictions from p-wave fitting show noticeable discrepancies with experimental data, but the heavy-baryon predictions are even worse. Therefore, working in the covariant framework, the tension between s- and p-wave amplitudes for baryon non-leptonic decays is significantly alleviated in comparison with that in heavy-baryon formalism. In addition, it is found that the contributions from intermediate pion states may be neglected in many cases, but are important and must be kept for decays with smaller experimental values.
      Corresponding author: YANG Jifeng, jfyang@phy.ecnu.edu.cn
    [1]

    Bijnens J, Sonoda H, Wise M B 1985 Nucl. Phys. B 261 185Google Scholar

    [2]

    Jenkins E 1992 Nucl. Phys. B 375 561Google Scholar

    [3]

    Borasoy B, Müller G 2000 Phys. Rev. D 62 054020Google Scholar

    [4]

    Żenczykowski P 2006 Phys. Rev. D 73 076005Google Scholar

    [5]

    Le Yaouanc A, Pène O, Raynal J C, Oliver L 1979 Nucl. Phys. B 149 321Google Scholar

    [6]

    Nardulli G 1988 Nuov. Cim. A 100 485Google Scholar

    [7]

    Scadron M D, Thebaud L R 1973 Phys. Rev. D 8 2329Google Scholar

    [8]

    Borasoy B, Holstein B R 1999 Eur. Phys. J. C 6 85Google Scholar

    [9]

    Borasoy B, Marco E 2003 Phys. Rev. D 67 114016Google Scholar

    [10]

    Abd El-Hady A, Tandean J 2000 Phys. Rev. D 61 114014Google Scholar

    [11]

    Becher T, Leutwyler H 1999 Eur. Phys. J. C 9 643Google Scholar

    [12]

    Fuchs T, Gegelia J, Japaridze G, Scherer S 2003 Phys. Rev. D 68 056005Google Scholar

    [13]

    Geng L S, Martín Cámalich J, Vicente Vacas M J 2009 Phys. Lett. B 676 63Google Scholar

    [14]

    Yang J F 2014 Mod. Phys. Lett. A 29 1450043Google Scholar

    [15]

    Liu Z, Wen L H, Yang J F 2021 Nucl. Phys. B 963 115288Google Scholar

    [16]

    Fettes N, Meissner U, Steininger S 1998 Nucl. Phys. A 640 199Google Scholar

    [17]

    Holmberg M, Leupold S 2018 Eur. Phys. J. A 54 103Google Scholar

    [18]

    Copeland P M, Ji C R, Melnitchouk W 2021 Phys. Rev. D 103 044019Google Scholar

    [19]

    Jenkins E 1992 Nucl. Phys. B 368 190Google Scholar

    [20]

    刘舟, 杨继锋 2022 华东师范大学学报 (自然科学版) 4 103Google Scholar

    Liu Z, Yang J F 2022 J. East China Normal Univ. (Nat. Sci. ) 4 103Google Scholar

    [21]

    周海峰, 杨继锋 2024 华东师范大学学报 (自然科学版) 3 12Google Scholar

    Zhou H F, Yang J F 2024 J. East China Normal Univ. (Nat. Sci.) 3 12Google Scholar

    [22]

    Salone N 2024 Nuov. Cim. 47C 201

    [23]

    Martín Cámalich J, Geng L S,Vicente Vacas M J 2010 Phys. Rev. D 82 074504Google Scholar

    [24]

    Gell-Mann M 1961 The Eightfold Way: A Theory of strong interaction symmetry Report Number: CTSL-20, TID-12608

    [25]

    Okubo S 1962 Prog. Theo. Phys. 27 949Google Scholar

  • 图 1  (a) 八重态重子波函数重整化图; (b) 介子波函数重整化图

    Figure 1.  (a) Graph for baryon octet wave function renormalization; (b) graph for pion wave function renormalization.

    图 2  衰变s波树图贡献(虚线表示介子, 实线表示重子)

    Figure 2.  Tree graph for s-wave hyperon non-leptonic decays (the dotted line denotes meson, and the solid line represents baryon).

    图 3  s波圈图贡献 (黑色方形表示弱作用顶角, 黑色圆形表示强作用)

    Figure 3.  One-loop graphs for s-wave hyperon non-leptonic decay amplitudes (the solid square denotes weak interaction vertices, while solid dot represents strong interaction vertices).

    图 4  衰变p波树图贡献

    Figure 4.  Tree graphs for p-wave hyperon non-leptonic decays.

    图 5  p波圈图贡献

    Figure 5.  One-loop graphs for p-wave hyperon non-leptonic decay amplitudes.

    图 6  协变$\varSigma^{({\mathrm{S}}){\mathrm{e}}}_{ij} $与重重子结果的对比

    Figure 6.  Comparison of covariant $\varSigma^{({\mathrm{S}}){\mathrm{e}}}_{ij} $ and HB results.

    表 1  s波拟合预测s, p波振幅(重整化点: 4πμ2 = 1)

    Table 1.  Fitting s-wave to predicts s and p wave amplitude (renormalization point: 4πμ2 = 1).

    树图 HB(Jenkins) 协变 协变π 协变(π外) 实验
    Σ+ → nπ+(s) 0.00 0.02 0.11 0.05 0.06 0.06 ± 0.01
    Σ+ → pπ0(s) –1.37 –1.39 –1.60 –0.18 –1.42 –1.38 ± 0.02
    Σ → nπ(s) 1.94 1.98 2.16 0.36 1.80 1.88 ± 0.01
    Λ → pπ(s) 1.43 1.49 1.58 0.11 1.47 1.38 ± 0.01
    Λ → nπ0(s) –1.01 –1.05 –1.19 –0.12 –1.07 –1.03 ± 0.01
    Ξ → nπ(s) –1.90 –1.76 –1.28 –0.23 –1.05 –1.99 ± 0.01
    Ξ0 → nπ0(s) 1.34 1.25 1.03 0.18 0.85 1.51 ± 0.01
    Σ+ → nπ+(p) 0.12 0.14 1.03 0.14 0.89 1.81 ± 0.01
    Σ+ → pπ0(p) 0.21 0.23 0.72 0.08 0.64 1.24 ± 0.03
    Σ → nπ(p) –0.18 –0.19 0.02 0.03 –0.01 –0.06 ± 0.01
    Λ → pπ(p) 0.43 1.31 0.38 0.05 0.33 0.63 ± 0.01
    Λ → nπ0(p) –0.31 –0.93 –0.27 –0.04 –0.23 –0.41 ± 0.01
    Ξ → nπ(p) 0.10 –0.21 0.19 0.00 0.19 0.39 ± 0.01
    Ξ0 → nπ0(p) –0.07 0.15 –0.14 –0.00 –0.14 –0.27 ± 0.01
    hD –0.58 ± 0.09 –0.60 ± 0.12 –0.53 ± 0.35
    hF 1.36 ± 0.05 1.00 ± 0.07 0.92 ± 0.20
    $ \chi _{1{\text{d}}{\text{.o}}{\text{.f}}}^2 $ 4.15 5.23 1.96
    $ \chi _{{\text{2 d}}{\text{.o}}{\text{.f}}}^2 $ 2676.96 3602.73 1403.43
    DownLoad: CSV

    表 2  s波拟合预测s, p波振幅(重整化点: 4πμ2 = 4π)

    Table 2.  Fitting s-wave to predicts s and p wave amplitude (renormalization point: 4πμ2 = 4π).

    树图 HB(Jenkins) 协变 协变π 协变(π外) 实验
    Σ+ → nπ+(s) 0.00 0.05 0.06 0.25 –0.19 0.06 ± 0.01
    Σ+ → pπ0(s) –1.37 –1.39 –1.73 –0.31 –1.42 –1.38 ± 0.02
    Σ → nπ(s) 1.94 2.02 2.13 0.76 1.37 1.88 ± 0.01
    Λ → pπ(s) 1.43 1.58 1.71 0.08 1.63 1.38 ± 0.01
    Λ → nπ0(s) –1.01 –1.12 –1.28 –0.06 –1.22 –1.03 ± 0.01
    Ξ → nπ(s) –1.90 –1.61 –0.99 –0.35 –0.64 –1.99 ± 0.01
    Ξ0 → nπ0(s) 1.34 1.14 0.92 0.25 0.67 1.51 ± 0.01
    Σ+ → nπ+(p) 0.12 0.13 1.51 0.18 1.33 1.81 ± 0.01
    Σ+ → pπ0(p) 0.21 0.25 1.09 0.10 0.99 1.24 ± 0.03
    Σ → nπ(p) –0.18 –0.22 –0.03 0.05 –0.08 –0.06 ± 0.01
    Λ → pπ(p) 0.43 0.98 0.33 0.09 0.24 0.63 ± 0.01
    Λ → nπ0(p) –0.31 –0.70 –0.23 –0.06 –0.17 –0.41 ± 0.01
    Ξ → nπ(p) 0.10 –0.36 0.56 0.05 0.51 0.39 ± 0.01
    Ξ0 → nπ0(p) –0.07 0.26 –0.40 –0.03 –0.37 –0.27 ± 0.01
    hD –0.58 ± 0.09 –0.49 ± 0.12 –0.47 ± 0.31
    hF 1.36 ± 0.05 0.71 ± 0.07 0.71 ± 0.19
    $ \chi _{1{\text{d}}{\text{.o}}{\text{.f}}}^2 $ 4.15 5.21 1.98
    $ \chi _{{\text{2 d}}{\text{.o}}{\text{.f}}}^2 $ 2676.96 3620.78 1556.18
    DownLoad: CSV

    表 3  p波拟合预测s, p波振幅(重整化点: 4πμ2 = 1)

    Table 3.  Fitting p-wave to predicts s and p wave amplitude (renormalization point: 4πμ2 = 1).

    树图 HB(Jenkins) 协变 协变π 协变(π外) 实验
    Σ+ → nπ+(s) 0.00 0.02 0.22 0.16 0.06 0.06 ± 0.01
    Σ+ → pπ0(s) –5.57 –3.31 –2.69 –0.31 –2.38 –1.38 ± 0.02
    Σ → nπ(s) 7.89 4.70 3.81 0.61 3.20 1.88 ± 0.01
    Λ → pπ(s) 4.01 1.83 2.76 0.24 2.52 1.38 ± 0.01
    Λ → nπ0(s) –2.83 –1.29 –2.02 –0.19 –1.83 –1.03 ± 0.01
    Ξ → nπ(s) –6.83 –3.27 –2.28 –0.41 –1.87 –1.99 ± 0.01
    Ξ0 → nπ0(s) 4.83 2.31 1.73 0.30 1.43 1.51 ± 0.01
    Σ+ → nπ+(p) 1.45 1.29 1.81 0.25 1.56 1.81 ± 0.01
    Σ+ → pπ0(p) 0.87 0.54 1.29 0.14 1.15 1.24 ± 0.03
    Σ → nπ(p) 0.21 0.53 –0.02 0.05 –0.07 –0.06 ± 0.01
    Λ → pπ(p) 0.74 0.82 0.65 0.09 0.56 0.63 ± 0.01
    Λ → nπ0(p) –0.52 –0.58 –0.46 –0.07 –0.39 –0.41 ± 0.01
    Ξ → nπ(p) 0.84 0.69 0.37 0.00 0.37 0.39 ± 0.01
    Ξ0 → nπ0(p) –0.60 –0.49 –0.26 –0.00 –0.26 –0.27 ± 0.01
    hD –3.46 ± 0.87 –1.95 ± 0.67 –0.93 ± 0.02
    hF 4.43 ± 1.34 1.67 ± 0.62 1.58 ± 0.04
    $ \chi _{1{\text{d}}{\text{.o}}{\text{.f}}}^2 $ 98.97 15.57 8.51
    $ \chi _{{\text{2 d}}{\text{.o}}{\text{.f}}}^2 $ 71376.35 10276.18 6026.18
    DownLoad: CSV

    表 4  p波拟合预测s, p波振幅(重整化点: 4πμ2 = 4π)

    Table 4.  Fitting p-wave to predicts s and p wave amplitude (renormalization point: 4πμ2 = 4π).

    树图 HB(Jenkins) 协变 协变π 协变(π外) 实验
    Σ+ → nπ+(s) 0.00 0.05 0.11 0.35 –0.24 0.06 ± 0.01
    Σ+ → pπ0(s) –5.57 –3.45 –2.07 –0.38 –1.69 –1.38 ± 0.02
    Σ → nπ(s) 7.89 4.93 2.66 0.97 1.69 1.88 ± 0.01
    Λ → pπ(s) 4.01 1.99 2.45 0.13 2.32 1.38 ± 0.01
    Λ → nπ0(s) –2.83 –1.41 –1.80 –0.09 –1.71 –1.03 ± 0.01
    Ξ → nπ(s) –6.83 –2.93 –1.37 –0.44 –0.93 –1.99 ± 0.01
    Ξ0 → nπ0(s) 4.83 2.07 1.19 0.31 0.88 1.51 ± 0.01
    Σ+ → nπ+(p) 1.45 1.43 1.76 0.22 1.54 1.81 ± 0.01
    Σ+ → pπ0(p) 0.87 0.60 1.38 0.12 1.26 1.24 ± 0.03
    Σ → nπ(p) 0.21 0.59 –0.19 0.05 –0.24 –0.06 ± 0.01
    Λ → pπ(p) 0.74 0.83 0.59 0.12 0.47 0.63 ± 0.01
    Λ → nπ0(p) –0.52 –0.58 –0.42 –0.08 –0.34 –0.41 ± 0.01
    Ξ → nπ(p) 0.84 0.38 0.55 0.05 0.50 0.39 ± 0.01
    Ξ0 → nπ0(p) –0.60 –0.27 –0.39 –0.03 –0.36 –0.27 ± 0.01
    hD –3.46 ± 0.87 –1.46 ± 0.46 –0.51 ± 0.05
    hF 4.43 ± 1.34 1.22 ± 0.45 0.96 ± 0.10
    $ \chi _{1{\text{d}}{\text{.o}}{\text{.f}}}^2 $ 98.97 16.37 3.41
    $ \chi _{{\text{2 d}}{\text{.o}}{\text{.f}}}^2 $ 71376.35 10.647.20 2529.84
    DownLoad: CSV
  • [1]

    Bijnens J, Sonoda H, Wise M B 1985 Nucl. Phys. B 261 185Google Scholar

    [2]

    Jenkins E 1992 Nucl. Phys. B 375 561Google Scholar

    [3]

    Borasoy B, Müller G 2000 Phys. Rev. D 62 054020Google Scholar

    [4]

    Żenczykowski P 2006 Phys. Rev. D 73 076005Google Scholar

    [5]

    Le Yaouanc A, Pène O, Raynal J C, Oliver L 1979 Nucl. Phys. B 149 321Google Scholar

    [6]

    Nardulli G 1988 Nuov. Cim. A 100 485Google Scholar

    [7]

    Scadron M D, Thebaud L R 1973 Phys. Rev. D 8 2329Google Scholar

    [8]

    Borasoy B, Holstein B R 1999 Eur. Phys. J. C 6 85Google Scholar

    [9]

    Borasoy B, Marco E 2003 Phys. Rev. D 67 114016Google Scholar

    [10]

    Abd El-Hady A, Tandean J 2000 Phys. Rev. D 61 114014Google Scholar

    [11]

    Becher T, Leutwyler H 1999 Eur. Phys. J. C 9 643Google Scholar

    [12]

    Fuchs T, Gegelia J, Japaridze G, Scherer S 2003 Phys. Rev. D 68 056005Google Scholar

    [13]

    Geng L S, Martín Cámalich J, Vicente Vacas M J 2009 Phys. Lett. B 676 63Google Scholar

    [14]

    Yang J F 2014 Mod. Phys. Lett. A 29 1450043Google Scholar

    [15]

    Liu Z, Wen L H, Yang J F 2021 Nucl. Phys. B 963 115288Google Scholar

    [16]

    Fettes N, Meissner U, Steininger S 1998 Nucl. Phys. A 640 199Google Scholar

    [17]

    Holmberg M, Leupold S 2018 Eur. Phys. J. A 54 103Google Scholar

    [18]

    Copeland P M, Ji C R, Melnitchouk W 2021 Phys. Rev. D 103 044019Google Scholar

    [19]

    Jenkins E 1992 Nucl. Phys. B 368 190Google Scholar

    [20]

    刘舟, 杨继锋 2022 华东师范大学学报 (自然科学版) 4 103Google Scholar

    Liu Z, Yang J F 2022 J. East China Normal Univ. (Nat. Sci. ) 4 103Google Scholar

    [21]

    周海峰, 杨继锋 2024 华东师范大学学报 (自然科学版) 3 12Google Scholar

    Zhou H F, Yang J F 2024 J. East China Normal Univ. (Nat. Sci.) 3 12Google Scholar

    [22]

    Salone N 2024 Nuov. Cim. 47C 201

    [23]

    Martín Cámalich J, Geng L S,Vicente Vacas M J 2010 Phys. Rev. D 82 074504Google Scholar

    [24]

    Gell-Mann M 1961 The Eightfold Way: A Theory of strong interaction symmetry Report Number: CTSL-20, TID-12608

    [25]

    Okubo S 1962 Prog. Theo. Phys. 27 949Google Scholar

  • [1] Wang Jing. Chiral Majorana fermion. Acta Physica Sinica, 2020, 69(11): 117302. doi: 10.7498/aps.69.20200534
    [2] Xu Song, Tang Xiao-Ming, Su Yuan-Da. Effective elastic modulus of a transverse isotropy solid with aligned inhomogeneity. Acta Physica Sinica, 2015, 64(20): 206201. doi: 10.7498/aps.64.206201
    [3] Xu Yan, Fan Wei, Ji Yan-Jun, Song Ren-Gang, Chen Bing, Zhao Zhen-Hua, Chen Da. Effective field theory approach to the weakly interacting bose gas. Acta Physica Sinica, 2014, 63(4): 040501. doi: 10.7498/aps.63.040501
    [4] Song Yong-Jia, Hu Heng-Shan. Variation of effective elastic moduli of a solid with transverse isotropy due to aligned inhomogeneities. Acta Physica Sinica, 2014, 63(1): 016202. doi: 10.7498/aps.63.016202
    [5] Zhong Shi, Yang Xiu-Qun, Guo Wei-Dong. Influence of local zero-plane displacement on effective aerodynamic parameters over heterogeneous terrain. Acta Physica Sinica, 2013, 62(14): 144212. doi: 10.7498/aps.62.144212
    [6] Huang Jin, Zhong Zhong, Guo Wei-Dong, Lu Wei. Statistical features of aerodynamic effective roughness length over heterogeneous terrain. Acta Physica Sinica, 2013, 62(5): 054204. doi: 10.7498/aps.62.054204
    [7] Huang Yong-Ping, Zhao Guang-Pu, Xiao Xi, Wang Fan-Hou. Effective radius of curvature of spatially partially coherent beams propagating through non-Kolmogorov turbulence. Acta Physica Sinica, 2012, 61(14): 144202. doi: 10.7498/aps.61.144202
    [8] Shi Qing-Fan, Li Liang-Sheng, Zhang Mei. Effectivity of Hamiltonian terms of "forbidden" 3-magnon interaction. Acta Physica Sinica, 2004, 53(11): 3916-3919. doi: 10.7498/aps.53.3916
    [9] WENG ZHENG-YU, WU HANG-SHENG. RELATION BETWEEN THE FORM OF THE NORMALIZED EFFECTIVE PHONON SPECTRUM AND THE SUPERCONDUCTING Tc. Acta Physica Sinica, 1988, 37(2): 239-247. doi: 10.7498/aps.37.239
    [10] ZHANG YAO-ZHONG. EFFECTIVE LAGRANGIAN AND MASS GENERATION OF THE CHIRAL QCD2 MODEL. Acta Physica Sinica, 1987, 36(11): 1513-1518. doi: 10.7498/aps.36.1513
    [11] LIANG XIAO-LING, LI JIA-MING. MINIMA OF OSCILLATOR STRENGTH DENSITIES FOR EXCITED ATOMS. Acta Physica Sinica, 1985, 34(11): 1479-1487. doi: 10.7498/aps.34.1479
    [12] LI HONG-CHENG. INFLUENCE OF EFFECTIVE PHONON SPECTRUM α2F(ω) ON Tc OF SUPERCONDUCTORS. Acta Physica Sinica, 1979, 28(1): 104-116. doi: 10.7498/aps.28.104
    [13] RUAN TONG-ZE, LI BING-AN. SEMI-LEPTONIC DECAYS OF THE BARYONS AND HIGH-ENERGY NEUTRINO REACTIONS IN THE STRATON MODEL. Acta Physica Sinica, 1977, 26(5): 397-410. doi: 10.7498/aps.26.397
    [14] . Acta Physica Sinica, 1975, 24(2): 105-114. doi: 10.7498/aps.24.105
    [15] YANG KUO-SHEN, LU TAN, LO LIAU-FU. AN INTERMEDIATE BOSON THEORY (Ⅱ)——THE NONLEPTONIC DECAYS OF HYPERONS. Acta Physica Sinica, 1966, 22(9): 1032-1037. doi: 10.7498/aps.22.1032
    [16] YUAN TUNG-TSE, CHEN SHIH. THREE-BODY LEPTONIC DECAYS OF THE K+ MESON. Acta Physica Sinica, 1965, 21(4): 779-786. doi: 10.7498/aps.21.779
    [17] . Acta Physica Sinica, 1965, 21(11): 1915-1918. doi: 10.7498/aps.21.1915
    [18] LO LIAU-F. SELECTION RULES IN NONLEPTONIC DECAYS OF STRANGE PARTICLES. Acta Physica Sinica, 1965, 21(6): 1132-1138. doi: 10.7498/aps.21.1132
    [19] . Acta Physica Sinica, 1965, 21(2): 469-470. doi: 10.7498/aps.21.469
    [20] . Acta Physica Sinica, 1964, 20(10): 1048-1052. doi: 10.7498/aps.20.1048
Metrics
  • Abstract views:  394
  • PDF Downloads:  23
  • Cited By: 0
Publishing process
  • Received Date:  15 May 2025
  • Accepted Date:  16 September 2025
  • Available Online:  14 October 2025
  • Published Online:  20 December 2025
  • /

    返回文章
    返回