-
With a new scheme of effective roughness length for heterogeneous terrain, based on the atmospheric boundary layer Monin-Obukhov similarity theory as well as flux and mass conservation principles, the statistical features of effective roughness length and its sensitivity to atmospheric stratification stability and roughness step for three surface category case are investigated. The results show that the effective roughness length is greater than the area-weighted logarithmic average one and the effective drag coefficient is more than 10% greater than the average one in most cases. The effective roughness length is much more sensitive to the roughness step, though it is dependent on the atmospheric stratification stability, and the relative percentage of effective roughness length and the effective drag coefficient will be 4 times and 3 times, respectively, for the double roughness step case. Therefore, the area-weighted average roughness length should be replaced by the effective one when the surface heterogeneity is considered in numerical models, which can represent the integrated effect of heterogeneous terrain.
[1] Sud Y C, Smith W E 1985 Bound. Lay. Meteorol. 33 1
[2] Sud Y C, Shukla J, Mintz Y 1988 J. Appl. Meteorol. 27 1036
[3] Hao P F, Yao Z H, He F 2007 Acta Phys. Sin. 56 4728 (in Chinese) [郝鹏飞, 姚朝晖, 何枫 2007 物理学报 56 4728]
[4] Zhang C B, Chen Y P, Shi M H, Fu P P, Wu J F 2009 Acta Phys. Sin. 58 7050 (in Chinese) [张程宾, 陈永平, 施明恒, 付盼盼, 吴嘉峰 2009 物理学报 58 7050]
[5] Li H Q, Guo W D, Sun G D, Zhang Y C 2011 Acta Phys. Sin. 60 019201 (in Chinese) [李红祺, 郭维栋, 孙国栋, 张耀存 2011 物理学报 60 019201]
[6] André J C, Blondin C 1986 Bound. Lay. Meteorol. 35 231
[7] Taylor P A 1987 Bound. Lay. Meteorol. 39 403
[8] Lhomme J P, Chehbouni A, Monteny B 1994 Bound. Lay. Meteorol. 71 297
[9] Hasager C B, Jensen N O 1999 Quater. J. Roy. Meteorol. Soc. 125 2075
[10] Bou-Zeid E, Meneveau C, Parlange M B 2004 Water Resour. Res. 40 W02505
[11] Bou-Zeid E, Parlange M B, Meneveau C 2007 J. Atmos. Sci. 64 216
[12] Zhong Z, Lu W, Song S, Zhang Y 2011 J. Hydrometeor. 12 1610
[13] Jiménez P A, Dudhia J 2012 J. Appl. Meteorol. Climatol. 51 300
[14] Businger J A, Wyngaard J C, Izumi Y, Badgley E F 1971 J. Atmos. Sci. 28 181
[15] Byun D W 1990 J. Appl. Meteorol. 29 652
[16] Lo A K 1995 Bound. Lay. Meteorol. 75 381
[17] Kirk-Davidoff D B, Keith D W 2008 J. Atmos. Sci. 65 2215
[18] Zhong Z, Zhao M, Su B K, Tang J P 2003 Adv. Atmos. Sci. 20 71
-
[1] Sud Y C, Smith W E 1985 Bound. Lay. Meteorol. 33 1
[2] Sud Y C, Shukla J, Mintz Y 1988 J. Appl. Meteorol. 27 1036
[3] Hao P F, Yao Z H, He F 2007 Acta Phys. Sin. 56 4728 (in Chinese) [郝鹏飞, 姚朝晖, 何枫 2007 物理学报 56 4728]
[4] Zhang C B, Chen Y P, Shi M H, Fu P P, Wu J F 2009 Acta Phys. Sin. 58 7050 (in Chinese) [张程宾, 陈永平, 施明恒, 付盼盼, 吴嘉峰 2009 物理学报 58 7050]
[5] Li H Q, Guo W D, Sun G D, Zhang Y C 2011 Acta Phys. Sin. 60 019201 (in Chinese) [李红祺, 郭维栋, 孙国栋, 张耀存 2011 物理学报 60 019201]
[6] André J C, Blondin C 1986 Bound. Lay. Meteorol. 35 231
[7] Taylor P A 1987 Bound. Lay. Meteorol. 39 403
[8] Lhomme J P, Chehbouni A, Monteny B 1994 Bound. Lay. Meteorol. 71 297
[9] Hasager C B, Jensen N O 1999 Quater. J. Roy. Meteorol. Soc. 125 2075
[10] Bou-Zeid E, Meneveau C, Parlange M B 2004 Water Resour. Res. 40 W02505
[11] Bou-Zeid E, Parlange M B, Meneveau C 2007 J. Atmos. Sci. 64 216
[12] Zhong Z, Lu W, Song S, Zhang Y 2011 J. Hydrometeor. 12 1610
[13] Jiménez P A, Dudhia J 2012 J. Appl. Meteorol. Climatol. 51 300
[14] Businger J A, Wyngaard J C, Izumi Y, Badgley E F 1971 J. Atmos. Sci. 28 181
[15] Byun D W 1990 J. Appl. Meteorol. 29 652
[16] Lo A K 1995 Bound. Lay. Meteorol. 75 381
[17] Kirk-Davidoff D B, Keith D W 2008 J. Atmos. Sci. 65 2215
[18] Zhong Z, Zhao M, Su B K, Tang J P 2003 Adv. Atmos. Sci. 20 71
Catalog
Metrics
- Abstract views: 6763
- PDF Downloads: 588
- Cited By: 0