搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

室温合成非晶三硫化钼析氢催化剂的性能调制以及其在串联制氢器件中的应用

晋中华 刘伯飞 梁俊辉 王宁 张奇星 刘彩池 赵颖 张晓丹

引用本文:
Citation:

室温合成非晶三硫化钼析氢催化剂的性能调制以及其在串联制氢器件中的应用

晋中华, 刘伯飞, 梁俊辉, 王宁, 张奇星, 刘彩池, 赵颖, 张晓丹

Modulating catalytic capacities of room-temperature synthetized amorphous molybdenum trisulfide hydrogen evolving catalysts and their applications to in series solar water splitting devices in series

Jin Zhong-Hua, Liu Bo-Fei, Liang Jun-Hui, Wang Ning, Zhang Qi-Xing, Liu Cai-Chi, Zhao Ying, Zhang Xiao-Dan
PDF
导出引用
  • 高催化活性、低成本、良好工艺兼容性以及高稳定性的析氢催化剂是实现一体化光电化学水解制氢器件的关键, 然而传统的贵金属催化剂由于储量稀缺、成本高昂而严重限制了光电化学水解制氢器件的产业化进程. 本文在室温下通过湿法化学合成法制备了高催化活性、成本低廉以及工艺兼容性好的非金属非晶三硫化钼析氢催化剂, 并研究了不同催化剂滴涂量对其催化活性以及串联制氢器件制氢性能的影响. 结果表明, 存在最优化非晶三硫化钼催化剂滴涂量以获得最佳催化活性(10 mA/cm2电流密度对应电势达260 mV vs. RHE(可逆氢电极), 塔菲尔斜率达68 mV/dec), 其粗糙表面以及多孔结构可获得更大的电化学接触面积以促进析氢反应. 进一步将其作为光阴极应用于串联制氢器件, 可有效降低过电势损失和提高光生电流密度输出, 与光阳极结合有望提高制氢效率.
    Highly-catalytic, cost-effective, well process-compatible, and highly-stable hydrogen-evolving catalysts are increasingly becoming key catalysts in realizing monolithic electrochemical solar water-splitting devices. However, the typical noble metallic catalysts seriously restrict the industrialization of electrochemical solar water-splitting devices on account of their poor storages and high costs. Low-cost, high-catalytic and non-metallic catalysts pave the promising way for the industrialization process. Molybdenum sulfide has emerged as a type of potential catalyst with high-activity and stability for the hydrogen-evolving reaction (HER) in the acidic condition, nowadays gradually becoming a research hotspot in solar-water-splitting. The process preparation of high-efficient molybdenum sulfide catalyst is consequently extremely important for enhancing the solar-to-hydrogen efficiency. In this paper, we synthesize highly-catalytic, low-cost, and highly-compatible non-metallic amorphous molybdenum trisulfide catalyst based on a simple wet chemical approach at room temperature for hydrogen-evolving reaction, followed by extensive studies of the effects of the mass loading of catalyst on the catalytic capacity and the solar-to-hydrogen performance of solar-water-splitting devices in series. When the mass loading is 0.5 mgcm-2, the MoS3 catalyst exhibits the promising HER activity. the surface of catalyst appears to be rough, porous, nano-sized architecture and the thickness is around 2.0 m, which simultaneously enlarges the electrochemically active area and reduces charge transfer impedance, accelerating the electron transport to electrochemically active site and improving the interfacial charge transfer. Besides, the HER catalytic activity is illustrated in a wired solar-water-splitting device. The current density can achieve the maximum values of 7.51 and 3.28 mA/cm2 corresponding to 0 and 0.8 V vs. RHE, and the onset potential is 1.83 V, comparable to the open circuit voltage (1.90 V) of two amorphous silcon cells in series. Therefore, we conclude that for amorphous molybdenum trisulfide catalyst there exists an optimized mass loading, with which an optimized catalytic capacity (260 mV vs. RHE at 10 mA/cm2 and tafel slope of 68 mV/dec) can be achieved. Further, by using the catalyst as a cathode for the solar-water-splitting devices in series, the catalyst can efficiently reduce the overpotential and improve the current output for the device, thereby potentially achieving a higher solar-to-hydrogen efficiency.
      通信作者: 张晓丹, xdzhang@nankai.edu.cn
    • 基金项目: 科技部国际合作项目(批准号: 2014DFE60170)和高等学校博士学科点专项科研基金(批准号: 20120031110039)资助的课题.
      Corresponding author: Zhang Xiao-Dan, xdzhang@nankai.edu.cn
    • Funds: Project supported by International Cooperation Projects of the Ministry of Science and Technology (Grant No. 2014DFE60170), and Specialized Research Fund for the PhD Program of Higher Education (Grant No. 20120031110039).
    [1]

    Jacobsson T J, Fjllstrm V, Sahlberg M, Edoff M, Edvinsson T 2013 Energy Environ. Sci. 6 3676

    [2]

    Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q X, Santori E A, Lewis N S 2010 Chem. Rev. 110 6446

    [3]

    Li Y G, Wang H L, Xie L M, Liang Y Y, Hong G S, Dai H J 2011 J. Am. Chem. Soc. 133 7296

    [4]

    Benck J D, Chen Z B, Kuritzky L Y, Forman A J, Jaramillo T F 2012 ACS Catal. 2 1916

    [5]

    Morales-Guio C G, Stern L A, Hu X L 2014 Chem. Soc. Rev. 43 6555

    [6]

    Jaramillo T F, Jorgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff I 2007 Science 317 100

    [7]

    Chen Z B, Cummins D, Reinecke B N, Clark E, Sunkara M K, Jaramillo T F 2011 Nano Lett. 11 4168

    [8]

    Merki D, Fierro S, Vrubel H, Hu X L 2011 Chem. Sci. 2 1262

    [9]

    Yan Y, Xia B Y, Xu Z C, Wang X 2014 ACS Catal. 4 1693

    [10]

    Huang X, Zeng Z Y, Zhang H 2013 Chem. Soc. Rev. 42 1934

    [11]

    Lauritsen J V, Bollinger M V, Lgsgaard E, Jacobsen K W, Nrskov J K, Clausen B S, Topse H, Besenbacher F 2004 J. Catal. 221 510

    [12]

    Merki D, Vrubel H, Rovelli L, Fierro S, Hu X L 2012 Chem. Sci. 3 2515

    [13]

    Abdi F F, Han L H, Smets A H M, Zeman M, Dam B, van de Krol R 2013 Nat. Commun. 4 2195

  • [1]

    Jacobsson T J, Fjllstrm V, Sahlberg M, Edoff M, Edvinsson T 2013 Energy Environ. Sci. 6 3676

    [2]

    Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q X, Santori E A, Lewis N S 2010 Chem. Rev. 110 6446

    [3]

    Li Y G, Wang H L, Xie L M, Liang Y Y, Hong G S, Dai H J 2011 J. Am. Chem. Soc. 133 7296

    [4]

    Benck J D, Chen Z B, Kuritzky L Y, Forman A J, Jaramillo T F 2012 ACS Catal. 2 1916

    [5]

    Morales-Guio C G, Stern L A, Hu X L 2014 Chem. Soc. Rev. 43 6555

    [6]

    Jaramillo T F, Jorgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff I 2007 Science 317 100

    [7]

    Chen Z B, Cummins D, Reinecke B N, Clark E, Sunkara M K, Jaramillo T F 2011 Nano Lett. 11 4168

    [8]

    Merki D, Fierro S, Vrubel H, Hu X L 2011 Chem. Sci. 2 1262

    [9]

    Yan Y, Xia B Y, Xu Z C, Wang X 2014 ACS Catal. 4 1693

    [10]

    Huang X, Zeng Z Y, Zhang H 2013 Chem. Soc. Rev. 42 1934

    [11]

    Lauritsen J V, Bollinger M V, Lgsgaard E, Jacobsen K W, Nrskov J K, Clausen B S, Topse H, Besenbacher F 2004 J. Catal. 221 510

    [12]

    Merki D, Vrubel H, Rovelli L, Fierro S, Hu X L 2012 Chem. Sci. 3 2515

    [13]

    Abdi F F, Han L H, Smets A H M, Zeman M, Dam B, van de Krol R 2013 Nat. Commun. 4 2195

  • [1] 万新阳, 章烨辉, 陆帅华, 吴艺蕾, 周跫桦, 王金兰. 机器学习加速搜寻新型双钙钛矿氧化物光催化剂. 物理学报, 2022, 71(17): 177101. doi: 10.7498/aps.71.20220601
    [2] 张凤, 廉森, 王明月, 陈雪, 殷继康, 何磊, 潘华卿, 任俊峰, 陈美娜. 掺杂、应变对析氢反应催化剂NiP2性能的影响. 物理学报, 2021, 70(14): 148802. doi: 10.7498/aps.70.20210298
    [3] 梁琦, 王如志, 杨孟骐, 王长昊, 刘金伟. Al2O3衬底无催化剂生长GaN纳米线及其光学性能. 物理学报, 2020, 69(8): 087801. doi: 10.7498/aps.69.20191923
    [4] 李壮, 底兰波, 于锋, 张秀玲. 冷等离子体强化制备金属催化剂研究进展. 物理学报, 2018, 67(21): 215202. doi: 10.7498/aps.67.20181451
    [5] 吴化平, 令欢, 张征, 李研彪, 梁利华, 柴国钟. 铁电材料光催化活性的研究进展. 物理学报, 2017, 66(16): 167702. doi: 10.7498/aps.66.167702
    [6] 李聪, 郑友进, 付斯年, 姜宏伟, 王丹. 稀土(La/Ce/Pr/Nd)掺杂锐钛矿相TiO2磁性及光催化活性的第一性原理研究. 物理学报, 2016, 65(3): 037102. doi: 10.7498/aps.65.037102
    [7] 贺瑞霞, 刘伯飞, 梁俊辉, 高海波, 王宁, 张奇星, 张德坤, 魏长春, 许盛之, 王广才, 赵颖, 张晓丹. 类桑拿法制备的周期性结构Mo金属催化电极及其在电解水制氢中的应用. 物理学报, 2016, 65(4): 048801. doi: 10.7498/aps.65.048801
    [8] 李宗宝, 王霞, 樊帅伟. Cu/N表面沉积共掺杂TiO2光催化剂作用机理的理论研究. 物理学报, 2014, 63(15): 157102. doi: 10.7498/aps.63.157102
    [9] 杨秀清, 胡亦, 张景路, 王艳秋, 裴春梅, 刘飞. AuPd纳米粒子作为催化剂制备硼纳米线及其场发射性质. 物理学报, 2014, 63(4): 048102. doi: 10.7498/aps.63.048102
    [10] 赵娟, 胡慧芳, 曾亚萍, 程彩萍. 花状硫化铜级次纳米结构的制备及可见光催化活性研究. 物理学报, 2013, 62(15): 158104. doi: 10.7498/aps.62.158104
    [11] 李玉琼, 陈建华, 郭进. 天然杂质对黄铁矿的电子结构及催化活性的影响. 物理学报, 2011, 60(9): 097801. doi: 10.7498/aps.60.097801
    [12] 叶佳宇, 刘亚丽, 王靖林, 何垚. Zr催化剂对NaAlH4和Na3AlH6可逆储氢性能的影响. 物理学报, 2010, 59(6): 4178-4185. doi: 10.7498/aps.59.4178
    [13] 张宏俊, 王 栋, 陈志权, 王少阶, 徐友明, 罗锡辉. MoO3/Al2O3催化剂中Mo分散的正电子研究. 物理学报, 2008, 57(11): 7333-7337. doi: 10.7498/aps.57.7333
    [14] 牛志强, 方 炎. 催化剂组分对制备单壁碳纳米管的影响. 物理学报, 2007, 56(3): 1796-1801. doi: 10.7498/aps.56.1796
    [15] 丁才蓉, 王 冰, 杨国伟, 汪河洲. 催化剂对热蒸发法生长SnO2纳米晶体质量的影响及其发光光谱研究. 物理学报, 2007, 56(3): 1775-1778. doi: 10.7498/aps.56.1775
    [16] 李振华, 王琴妹, 王 淼. 金属铈催化剂对单壁纳米碳管生长和结构的影响. 物理学报, 2005, 54(5): 2158-2161. doi: 10.7498/aps.54.2158
    [17] 张红瑞, 郭新勇, 丁 佩, 杜祖亮, 梁二军. 不同催化剂热解法制备硼碳氮纳米管过程中的影响. 物理学报, 2003, 52(7): 1808-1811. doi: 10.7498/aps.52.1808
    [18] 张涛, 康敏成, 路文昌. 杂质对担载式催化剂化学吸附的影响. 物理学报, 1990, 39(12): 2025-2028. doi: 10.7498/aps.39.2025
    [19] 胡永军, 林彰达, 王昌衡, 谢侃. 助催化剂Co与单晶MoS2边缘面区域及离子溅射解理面相互作用. 物理学报, 1986, 35(11): 1447-1456. doi: 10.7498/aps.35.1447
    [20] 裘祖文, 朱育芬, 唐学明, 熊福金, 孔宪印. π-(C5H5)2TiCl2·AlR3系可溶性催化剂的电子自旋共振波谱. 物理学报, 1961, 17(12): 600-607. doi: 10.7498/aps.17.600
计量
  • 文章访问数:  6697
  • PDF下载量:  247
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-29
  • 修回日期:  2016-03-04
  • 刊出日期:  2016-06-05

/

返回文章
返回