搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁电材料光催化活性的研究进展

吴化平 令欢 张征 李研彪 梁利华 柴国钟

铁电材料光催化活性的研究进展

吴化平, 令欢, 张征, 李研彪, 梁利华, 柴国钟
PDF
导出引用
导出核心图
  • 光催化技术被认为是最有前景的环境污染处理技术,这就使得光催化剂材料备受瞩目.近年来,铁电材料作为新型光催化剂材料受到人们越来越多的关注,其原因在于铁电材料特有的自发极化有望解决催化反应过程中的电子-空穴对复合问题,进而提高光催化活性.本文从两个方面对铁电极化如何影响光催化进行综述:一方面,从铁电极化入手归纳总结其对电子-空穴对分离的影响,进而更深入地从极化引发的退极化场和能带弯曲两个部分来阐述具体的影响机理;另一方面,为了消除静电屏蔽,分别从温度、应力(应变)、电场三个外场因素调控极化入手,归纳总结外场调控极化对电子-空穴对分离的影响,进而影响光催化活性.最后对该领域今后的发展前景进行了展望.
      通信作者: 吴化平, wuhuaping@gmail.com
    • 基金项目: 国家自然科学基金(批准号:11372280,11672269,51475424,51675485)、浙江省科技厅公益工业项目(批准号:2016C31041)和国家重点实验室开放基金(批准号:GZ15205)资助的课题.
    [1]

    Fujishima A, Honda K 1972 Nature 238 37

    [2]

    Wang Y Z, Hu C 1998 Chin. J. Environ. (in Chinese)[王怡中, 胡春1998环境科学]

    [3]

    Legrini O, Oliveros E, Braun A M 1993 Chem. Rev. 93 671

    [4]

    Cui Y M, Dan D J, Zhu Y R 2001 Chin. J. Inorg. Chem. 17 401 (in Chinese)[崔玉民, 单德杰, 朱亦仁2001无机化学学报17 401]

    [5]

    Hadjiivanov K, Vasileva E, Kantcheva M, Klissursri D 1991 Mater. Chem. Phys. 28 367

    [6]

    Gao Y M, Lee W, Trehan R, Kershaw R, Dwight K, Wold A 1991 Mater. Res. Bull. 26 1247

    [7]

    Grosso D, Boissiere C, Smarsly B, Brezesinski T, Pinna N, Albouy P A, Amenitsch H, Antonietti M, Sanchez C 2004 Nature Mater. 3 787

    [8]

    Mohan S, Subramanian B 2013 RSC Adv. 3 23737

    [9]

    Wang H C, Lin Y H, Feng Y N, Shen Y 2013 J. Electroceram. 31 271

    [10]

    Humayun M, Zada A, Li Z J, Xie M Z, Zhang X L, Yang Q, Raziq F, Jing L Q 2016 Appl. Catal. B:Environ. 180 219

    [11]

    Giocondi J L, Rohrer G S 2001 Chem. Mater. 13 241

    [12]

    Saito K, Koga K, Kudo A 2011 Dalton T. 40 3909

    [13]

    Shi J, Zhao P, Wang X D 2013 Adv. Mater. 25 916

    [14]

    Zheng Y, Wang B, Woo C H 2009 Acta Mech. Solida Sin. 22 524

    [15]

    Dong H F, Wu Z G, Wang S Y, Duan W H, Li J B 2013 Appl. Phys. Lett. 102 072905

    [16]

    Shuai J L, Liu X X, Yang B 2016 Acta Phys. Sin. 65 118101 (in Chinese)[帅佳丽, 刘向鑫, 杨彪2016物理学报65 118101]

    [17]

    Sakar M, Balakumar S, Saravanan P, Bharathkumar S 2016 Nanoscale 8 1147

    [18]

    Dunn S, Stock M 2012 Mrs Online Proceeding Library 1446

    [19]

    Park S, Lee C W, Kang M G, Kim S, Kim H J, Kwon J E, Park S Y, Kang C Y, Hong K S, Nam K T 2014 Phys. Chem. Chem. Phys. 16 10408

    [20]

    Cui Y F, Briscoe J, Dunn S 2013 Chem. Mater. 25 4215

    [21]

    Li L, Salvador P A, Rohrer G S 2013 Nanoscale 6 24

    [22]

    Dunn S, Shaw C P, Huang Z, Whatmore R W 2002 Nanotechnology 13 456

    [23]

    He H Q, Yin J, Li Y X, Zhang Y, Qiu H S, Xu J B, Xu T, Wang C Y 2014 Appl. Catal. B-Environ. 156 35

    [24]

    Stock M, Dunn S 2012 J. Phys. Chem. C 116 20854

    [25]

    Yang X L, Su X D, Shen M R, Zheng F G, Xin Y, Zhang L, Hua M C, Chen Y J, Harris V G 2012 Adv. Mater. 24 1202

    [26]

    Popescu D G, Husanu M A, Trupina L, Hrib L, Pintilie L, Barinov A, Lizzit S, Lacovig P, Teodorescu C M 2015 Phys. Chem. Chem. Phys. 17 509

    [27]

    Yu H, Wang X H, Hao W C, Li L T 2015 RSC Adv. 5 72410

    [28]

    Yang W, Rodriguez B J, Gruverman A, Nemanich R J 2005 J. Phys. Condens. Mater. 17 1415

    [29]

    Kalinin S V, Bonnell D A, Alvarez T, Lei X, Hu Z, Ferris J H, Zhang Q, Dunn S 2002 Nano Lett. 2 589

    [30]

    Dunn S, Jones P M, Gallardo D E 2007 J. Am. Chem. Soc. 129 8724

    [31]

    Kalinin S V, Bonnell D A, Alvarez T, Lei X, Hu Z, Ferris J H, Zhang Q, Dunn S 2002 Nano Lett. 2 589

    [32]

    Yan F, Chen G N, Lu L, Spanier J E 2012 ACS Nano 6 2353

    [33]

    Yang W, Yu Y, Starr M B, Yin X, Li Z, Kvit A, Wang S, Zhao P, Wang X 2015 Nano Lett. 15 7574

    [34]

    Giocondi J L, Rohrer G S 2001 J. Phys. Chem. B 105 8275

    [35]

    Benedek N A, Fennie C J 2013 J. Phys. Chem. C 117 13339

    [36]

    Bowen C R, Kim H A, Weaver P M, Dunn S 2014 Energy Environ. Sci. 7 25

    [37]

    Sakar M, Balakumar S, Saravanan P, Bharathkumar S 2015 Nanoscale 7 10667

    [38]

    Bowen C R, Kim H A, Weaver P M, Dunn S 2013 Energy Environ. Sci. 7 25

    [39]

    Schultz A M, Zhang Y L, Salvador P A, Rohrer G S 2011 ACS Appl. Mater. Inter. 3 1562

    [40]

    Ji W, Yao K, Lim Y F, Liang Y C, Suwardi A 2013 Appl. Phys. Lett. 103 062901

    [41]

    Cui Y F, Goldup S M, Dunn S 2015 RSC Adv. 5 30372

    [42]

    Li L, Rohrer G S, Salvador P A 2012 J. Am. Ceram. Soc. 95 1414

    [43]

    Li L, Zhang Y L, Schultz A M, Liu X, Salvador P A, Rohrer G S 2012 Cat. Sci. Tec. 2 1945

    [44]

    Zhang Y L, Schultz A M, Salvador P A, Rohrer G S 2011 J. Mater. Chem. 21 4168

    [45]

    Li H D, Sang Y H, Chang S J, Huang X, Zhang Y, Yang R S, Jiang H D, Liu H, Wang Z L 2015 Nano Lett. 15 2372

    [46]

    Gutmann E, Benke A, Gerth K, Bottcher H, Mehner E, Klein C, Krause-Buchholz U, Bergmann U, Pompe W, Meyer D C 2012 J. Phys. Chem. C 116 5383

    [47]

    Su R, Shen Y J, Li L L, Zhang D W, Yang G, Gao C B, Yang Y D 2015 Small 11 202

    [48]

    Zhang G H, Zhu J, Jiang G L, Wang B, Zheng Y 2016 Acta Phys. Sin. 65 107701 (in Chinese)[张耿鸿, 朱佳, 姜格蕾, 王彪, 郑跃2016物理学报65 107701]

    [49]

    Wu H P, Ma X F, Zhang Z, Zeng J, Wang J, Chai G Z 2016 AIP Adv. 6 015309

    [50]

    Wu H P, Ma X F, Zhang Z, Zhu J, Wang J, Chai G Z 2016 J. Appl. Phys. 119 104421

    [51]

    Wu H P, Chai G Z, Xu B, Li J Q, Zhang Z 2013 Appl. Phys. A 113 155

    [52]

    Lin H, Wu Z, Jia Y M, Li W J, Zheng R K, Luo H S 2014 Appl. Phys. Lett. 104 162907

  • [1]

    Fujishima A, Honda K 1972 Nature 238 37

    [2]

    Wang Y Z, Hu C 1998 Chin. J. Environ. (in Chinese)[王怡中, 胡春1998环境科学]

    [3]

    Legrini O, Oliveros E, Braun A M 1993 Chem. Rev. 93 671

    [4]

    Cui Y M, Dan D J, Zhu Y R 2001 Chin. J. Inorg. Chem. 17 401 (in Chinese)[崔玉民, 单德杰, 朱亦仁2001无机化学学报17 401]

    [5]

    Hadjiivanov K, Vasileva E, Kantcheva M, Klissursri D 1991 Mater. Chem. Phys. 28 367

    [6]

    Gao Y M, Lee W, Trehan R, Kershaw R, Dwight K, Wold A 1991 Mater. Res. Bull. 26 1247

    [7]

    Grosso D, Boissiere C, Smarsly B, Brezesinski T, Pinna N, Albouy P A, Amenitsch H, Antonietti M, Sanchez C 2004 Nature Mater. 3 787

    [8]

    Mohan S, Subramanian B 2013 RSC Adv. 3 23737

    [9]

    Wang H C, Lin Y H, Feng Y N, Shen Y 2013 J. Electroceram. 31 271

    [10]

    Humayun M, Zada A, Li Z J, Xie M Z, Zhang X L, Yang Q, Raziq F, Jing L Q 2016 Appl. Catal. B:Environ. 180 219

    [11]

    Giocondi J L, Rohrer G S 2001 Chem. Mater. 13 241

    [12]

    Saito K, Koga K, Kudo A 2011 Dalton T. 40 3909

    [13]

    Shi J, Zhao P, Wang X D 2013 Adv. Mater. 25 916

    [14]

    Zheng Y, Wang B, Woo C H 2009 Acta Mech. Solida Sin. 22 524

    [15]

    Dong H F, Wu Z G, Wang S Y, Duan W H, Li J B 2013 Appl. Phys. Lett. 102 072905

    [16]

    Shuai J L, Liu X X, Yang B 2016 Acta Phys. Sin. 65 118101 (in Chinese)[帅佳丽, 刘向鑫, 杨彪2016物理学报65 118101]

    [17]

    Sakar M, Balakumar S, Saravanan P, Bharathkumar S 2016 Nanoscale 8 1147

    [18]

    Dunn S, Stock M 2012 Mrs Online Proceeding Library 1446

    [19]

    Park S, Lee C W, Kang M G, Kim S, Kim H J, Kwon J E, Park S Y, Kang C Y, Hong K S, Nam K T 2014 Phys. Chem. Chem. Phys. 16 10408

    [20]

    Cui Y F, Briscoe J, Dunn S 2013 Chem. Mater. 25 4215

    [21]

    Li L, Salvador P A, Rohrer G S 2013 Nanoscale 6 24

    [22]

    Dunn S, Shaw C P, Huang Z, Whatmore R W 2002 Nanotechnology 13 456

    [23]

    He H Q, Yin J, Li Y X, Zhang Y, Qiu H S, Xu J B, Xu T, Wang C Y 2014 Appl. Catal. B-Environ. 156 35

    [24]

    Stock M, Dunn S 2012 J. Phys. Chem. C 116 20854

    [25]

    Yang X L, Su X D, Shen M R, Zheng F G, Xin Y, Zhang L, Hua M C, Chen Y J, Harris V G 2012 Adv. Mater. 24 1202

    [26]

    Popescu D G, Husanu M A, Trupina L, Hrib L, Pintilie L, Barinov A, Lizzit S, Lacovig P, Teodorescu C M 2015 Phys. Chem. Chem. Phys. 17 509

    [27]

    Yu H, Wang X H, Hao W C, Li L T 2015 RSC Adv. 5 72410

    [28]

    Yang W, Rodriguez B J, Gruverman A, Nemanich R J 2005 J. Phys. Condens. Mater. 17 1415

    [29]

    Kalinin S V, Bonnell D A, Alvarez T, Lei X, Hu Z, Ferris J H, Zhang Q, Dunn S 2002 Nano Lett. 2 589

    [30]

    Dunn S, Jones P M, Gallardo D E 2007 J. Am. Chem. Soc. 129 8724

    [31]

    Kalinin S V, Bonnell D A, Alvarez T, Lei X, Hu Z, Ferris J H, Zhang Q, Dunn S 2002 Nano Lett. 2 589

    [32]

    Yan F, Chen G N, Lu L, Spanier J E 2012 ACS Nano 6 2353

    [33]

    Yang W, Yu Y, Starr M B, Yin X, Li Z, Kvit A, Wang S, Zhao P, Wang X 2015 Nano Lett. 15 7574

    [34]

    Giocondi J L, Rohrer G S 2001 J. Phys. Chem. B 105 8275

    [35]

    Benedek N A, Fennie C J 2013 J. Phys. Chem. C 117 13339

    [36]

    Bowen C R, Kim H A, Weaver P M, Dunn S 2014 Energy Environ. Sci. 7 25

    [37]

    Sakar M, Balakumar S, Saravanan P, Bharathkumar S 2015 Nanoscale 7 10667

    [38]

    Bowen C R, Kim H A, Weaver P M, Dunn S 2013 Energy Environ. Sci. 7 25

    [39]

    Schultz A M, Zhang Y L, Salvador P A, Rohrer G S 2011 ACS Appl. Mater. Inter. 3 1562

    [40]

    Ji W, Yao K, Lim Y F, Liang Y C, Suwardi A 2013 Appl. Phys. Lett. 103 062901

    [41]

    Cui Y F, Goldup S M, Dunn S 2015 RSC Adv. 5 30372

    [42]

    Li L, Rohrer G S, Salvador P A 2012 J. Am. Ceram. Soc. 95 1414

    [43]

    Li L, Zhang Y L, Schultz A M, Liu X, Salvador P A, Rohrer G S 2012 Cat. Sci. Tec. 2 1945

    [44]

    Zhang Y L, Schultz A M, Salvador P A, Rohrer G S 2011 J. Mater. Chem. 21 4168

    [45]

    Li H D, Sang Y H, Chang S J, Huang X, Zhang Y, Yang R S, Jiang H D, Liu H, Wang Z L 2015 Nano Lett. 15 2372

    [46]

    Gutmann E, Benke A, Gerth K, Bottcher H, Mehner E, Klein C, Krause-Buchholz U, Bergmann U, Pompe W, Meyer D C 2012 J. Phys. Chem. C 116 5383

    [47]

    Su R, Shen Y J, Li L L, Zhang D W, Yang G, Gao C B, Yang Y D 2015 Small 11 202

    [48]

    Zhang G H, Zhu J, Jiang G L, Wang B, Zheng Y 2016 Acta Phys. Sin. 65 107701 (in Chinese)[张耿鸿, 朱佳, 姜格蕾, 王彪, 郑跃2016物理学报65 107701]

    [49]

    Wu H P, Ma X F, Zhang Z, Zeng J, Wang J, Chai G Z 2016 AIP Adv. 6 015309

    [50]

    Wu H P, Ma X F, Zhang Z, Zhu J, Wang J, Chai G Z 2016 J. Appl. Phys. 119 104421

    [51]

    Wu H P, Chai G Z, Xu B, Li J Q, Zhang Z 2013 Appl. Phys. A 113 155

    [52]

    Lin H, Wu Z, Jia Y M, Li W J, Zheng R K, Luo H S 2014 Appl. Phys. Lett. 104 162907

  • [1] 朱立峰, 潘文远, 谢燕, 张波萍, 尹阳, 赵高磊. 缺陷离子调控对BiFeO3-BaTiO3基钙钛矿材料的铁电光伏特性影响. 物理学报, 2019, 68(21): 217701. doi: 10.7498/aps.68.20190996
    [2] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展. 物理学报, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [3] 邵梓桥, 毕恒昌, 谢骁, 万能, 孙立涛. 三氧化钨/氧化银复合材料的水热法合成及其光催化降解性能研究. 物理学报, 2018, 67(16): 167802. doi: 10.7498/aps.67.20180663
    [4] 周利, 王取泉. 等离激元共振能量转移与增强光催化研究进展. 物理学报, 2019, 68(14): 147301. doi: 10.7498/aps.68.20190276
    [5] 梁培, 王乐, 熊斯雨, 董前民, 李晓艳. Mo-X(B, C, N, O, F)共掺杂TiO2体系的光催化协同效应研究. 物理学报, 2012, 61(5): 053101. doi: 10.7498/aps.61.053101
    [6] 赵娟, 胡慧芳, 曾亚萍, 程彩萍. 花状硫化铜级次纳米结构的制备及可见光催化活性研究. 物理学报, 2013, 62(15): 158104. doi: 10.7498/aps.62.158104
    [7] 李佩欣, 冯铭扬, 吴彩平, 李少波, 侯磊田, 马嘉赛, 殷春浩. 基于电子顺磁共振的锌卟啉敏化TiO2光催化性机理的研究. 物理学报, 2015, 64(13): 137601. doi: 10.7498/aps.64.137601
    [8] 陈应天, 何祚庥. 强辐射催化法提纯多晶硅. 物理学报, 2011, 60(7): 078104. doi: 10.7498/aps.60.078104
    [9] 陈钊, 丁竑瑞, 陈伟华, 李艳, 张国义, 鲁安怀, 胡晓东. 太阳能电池在微生物燃料电池中的光电催化性能研究. 物理学报, 2012, 61(24): 248801. doi: 10.7498/aps.61.248801
    [10] 徐国成, 潘 玲, 关庆丰, 邹广田. 非晶钛酸铋的晶化过程. 物理学报, 2006, 55(6): 3080-3085. doi: 10.7498/aps.55.3080
    [11] 王磊, 杨成韬, 解群眺, 叶井红. 双层纳米磁电薄膜模型及分析. 物理学报, 2009, 58(5): 3515-3519. doi: 10.7498/aps.58.3515
    [12] 马海敏, 洪亮, 尹伊, 许坚, 叶辉. 超亲水性SiO2-TiO2纳米颗粒阵列结构的制备与性能研究. 物理学报, 2011, 60(9): 098105. doi: 10.7498/aps.60.098105
    [13] 王涛, 陈建峰, 乐园. I掺杂金红石TiO2(110)面的第一性原理研究. 物理学报, 2014, 63(20): 207302. doi: 10.7498/aps.63.207302
    [14] 郭昭龙, 赵海新, 赵卫. 纳米ZnO-SiO2自清洁增透薄膜的制备及其性能. 物理学报, 2016, 65(6): 064206. doi: 10.7498/aps.65.064206
    [15] 王逸飞, 李晓薇. 石墨烯/BiOI纳米复合物电子结构和光学性质的第一性原理模拟计算. 物理学报, 2018, 67(11): 116301. doi: 10.7498/aps.67.20172220
    [16] 张爱平, 张进治. 水热法制备不同形貌和结构的BiVO4粉末. 物理学报, 2009, 58(4): 2336-2344. doi: 10.7498/aps.58.2336
    [17] 王飞鹏, 夏钟福, 邱勋林, 沈 军. 聚丙烯孔洞铁电驻极体膜的电极化及其电荷动态特性. 物理学报, 2006, 55(7): 3705-3710. doi: 10.7498/aps.55.3705
    [18] 李智强, 陈敏, 沈文彬, 李景德. 铁电极化子动力学理论. 物理学报, 2001, 50(12): 2477-2481. doi: 10.7498/aps.50.2477
    [19] 李平, 李海金, 涂文广, 周勇, 邹志刚. Z型光催化材料的研究进展. 物理学报, 2015, 64(9): 094209. doi: 10.7498/aps.64.094209
    [20] 郑伟, 杜安. 外场作用下铁电/铁磁双层膜的极化磁化性质. 物理学报, 2019, 68(3): 037501. doi: 10.7498/aps.68.20181879
  • 引用本文:
    Citation:
计量
  • 文章访问数:  780
  • PDF下载量:  299
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-18
  • 修回日期:  2017-06-01
  • 刊出日期:  2017-08-20

铁电材料光催化活性的研究进展

  • 1. 浙江工业大学机械工程学院, 特种装备制造与先进技术教育部/浙江省重点实验室, 杭州 310014
  • 通信作者: 吴化平, wuhuaping@gmail.com
    基金项目: 

    国家自然科学基金(批准号:11372280,11672269,51475424,51675485)、浙江省科技厅公益工业项目(批准号:2016C31041)和国家重点实验室开放基金(批准号:GZ15205)资助的课题.

摘要: 光催化技术被认为是最有前景的环境污染处理技术,这就使得光催化剂材料备受瞩目.近年来,铁电材料作为新型光催化剂材料受到人们越来越多的关注,其原因在于铁电材料特有的自发极化有望解决催化反应过程中的电子-空穴对复合问题,进而提高光催化活性.本文从两个方面对铁电极化如何影响光催化进行综述:一方面,从铁电极化入手归纳总结其对电子-空穴对分离的影响,进而更深入地从极化引发的退极化场和能带弯曲两个部分来阐述具体的影响机理;另一方面,为了消除静电屏蔽,分别从温度、应力(应变)、电场三个外场因素调控极化入手,归纳总结外场调控极化对电子-空穴对分离的影响,进而影响光催化活性.最后对该领域今后的发展前景进行了展望.

English Abstract

参考文献 (52)

目录

    /

    返回文章
    返回