-
采用密度泛函理论平面波超软赝势方法, 计算并分析了Mo/X(B, C, N, O, F)共掺杂TiO2体系的形成能、电子结构和光学性质, 研究了共掺杂协同效应对于计算体系光催化性能的影响机制. 首先计算出不同掺杂体系的态密度及能带结构, 利用能带理论分析了共掺杂效应对于禁带宽度的调控作用, 进而分析了共掺杂对TiO2光催化能力和稳定性的协同作用. 结合电荷密度图, 分析原子间的电荷转移情况, 得到计算体系中各原子成键状态. 最后, 结合光吸收谱线分析得出Mo/C共掺杂类型在调制TiO2体系中可见光波段的光催化性能上优势明显, 在催化作用上表现出协同效应. 本文的理论研究对共掺杂方法在TiO2光催化领域有着一定的指导意义.
[1] O'regan B, Grätzel M 1991 Nature 353 737
[2] Linsebigler A L, Lu G P, Yates J T 1995 Chem. Rev. 95 735
[3] Zhao Z Y, Liu Q J, Zhang J, Zhu Z Q 2007 Acta Phys. Sin. 566592 (in Chinese)[赵宗彦, 柳清菊, 张瑾, 朱忠其 2007 物理学报 56 6592]
[4] Kim H Y, Lee H M, Pala R G S, Shapovalov V, Metiu H C 2008 J.Phys. Chem. C 112 12398
[5] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y 2001 Science293 269
[6] Yang K, Dai Y, Huang B 2007 J. Phys. Chem. C 111 12086
[7] Wu X W, Wu D J, Liu X J 2010 Acta Phys. Sin. 59 4788 (inChinese) [吴雪炜, 吴大建, 刘晓峻 2010 物理学报 59 4788]
[8] Wang Y, Meng Y, Ding H, Shan Y, Zhao X, Tang X 2008 J. Phys.Chem. C 112 6620
[9] Park J H, Kim S, Bard A J 2006 Nano Lett. 6 24
[10] Xu L, Tang C Q, Qian J 2010 Acta Phys. Sin. 59 2721 (in Chinese)[徐凌, 唐超群, 钱俊 2010 物理学报 59 2721]
[11] Finazzi E, Di Valentin C, Pacchioni G 2008 J. Phys. Chem. C 113220
[12] Yang K, Dai Y, Huang B 2007 J. Phys. Chem. C 111 18985
[13] Chen X, Burda C 2008 J. Am. Chem. Soc. 130 5018
[14] Long R, English N J 2010 Chem. Phys. Lett. 498 338
[15] Zhang X J, Gao P, Liu Q J 2010 Acta Phys. Sin. 59 4930 (inChinese) [张学军, 高攀, 柳清菊 2010 物理学报 59 4930]
[16] Tan K, Zhang H, Xie C, Zheng H, Gu Y, Zhang W 2010 Catal.Commun. 11 331
[17] Gai Y Q, Li J B, Li S S, Xia J B, Wei S H 2009 Phys. Rev. Lett.102 36402
[18] Argaman N, Makov G 2000 Am. J. Phys. 68 69
[19] Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15
[20] Vanderbilt D 1990 Phys. Rev. B 41 7892
[21] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[22] Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244
[23] White J A, Bird D M 1994 Phys. Rev. B 50 4954
[24] Pulay P 1980 Chem. Phys. Lett. 73 393
[25] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J,Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[26] Burdett J 1995 Acta Crystallogr. Sect. B: Struct. Sci. 51 547
-
[1] O'regan B, Grätzel M 1991 Nature 353 737
[2] Linsebigler A L, Lu G P, Yates J T 1995 Chem. Rev. 95 735
[3] Zhao Z Y, Liu Q J, Zhang J, Zhu Z Q 2007 Acta Phys. Sin. 566592 (in Chinese)[赵宗彦, 柳清菊, 张瑾, 朱忠其 2007 物理学报 56 6592]
[4] Kim H Y, Lee H M, Pala R G S, Shapovalov V, Metiu H C 2008 J.Phys. Chem. C 112 12398
[5] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y 2001 Science293 269
[6] Yang K, Dai Y, Huang B 2007 J. Phys. Chem. C 111 12086
[7] Wu X W, Wu D J, Liu X J 2010 Acta Phys. Sin. 59 4788 (inChinese) [吴雪炜, 吴大建, 刘晓峻 2010 物理学报 59 4788]
[8] Wang Y, Meng Y, Ding H, Shan Y, Zhao X, Tang X 2008 J. Phys.Chem. C 112 6620
[9] Park J H, Kim S, Bard A J 2006 Nano Lett. 6 24
[10] Xu L, Tang C Q, Qian J 2010 Acta Phys. Sin. 59 2721 (in Chinese)[徐凌, 唐超群, 钱俊 2010 物理学报 59 2721]
[11] Finazzi E, Di Valentin C, Pacchioni G 2008 J. Phys. Chem. C 113220
[12] Yang K, Dai Y, Huang B 2007 J. Phys. Chem. C 111 18985
[13] Chen X, Burda C 2008 J. Am. Chem. Soc. 130 5018
[14] Long R, English N J 2010 Chem. Phys. Lett. 498 338
[15] Zhang X J, Gao P, Liu Q J 2010 Acta Phys. Sin. 59 4930 (inChinese) [张学军, 高攀, 柳清菊 2010 物理学报 59 4930]
[16] Tan K, Zhang H, Xie C, Zheng H, Gu Y, Zhang W 2010 Catal.Commun. 11 331
[17] Gai Y Q, Li J B, Li S S, Xia J B, Wei S H 2009 Phys. Rev. Lett.102 36402
[18] Argaman N, Makov G 2000 Am. J. Phys. 68 69
[19] Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15
[20] Vanderbilt D 1990 Phys. Rev. B 41 7892
[21] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[22] Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244
[23] White J A, Bird D M 1994 Phys. Rev. B 50 4954
[24] Pulay P 1980 Chem. Phys. Lett. 73 393
[25] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J,Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[26] Burdett J 1995 Acta Crystallogr. Sect. B: Struct. Sci. 51 547
引用本文: |
Citation: |
计量
- 文章访问数: 2412
- PDF下载量: 466
- 被引次数: 0