Analytical method for four wave mixing in space-frequency multiplexing optical fibers
Wan Feng, Wu Bao-Jian, Cao Ya-Min, Wang Yu-Hao, Wen Feng, Qiu Kun
Key Laboratory of Optical Fiber Sensing and Communication, Ministry of Education, School of Information and Communication Engineering, University of Electonic Science and Technology of China, Chengdu 611731, China
In recent years, the transmission capacity of wavelength division multiplexing (WDM) communication systems has gradually approached to the nonlinear Shannon limit. To meet the increasing demand for communication capacity, space division multiplexing (SDM) has become one of the most concerned technologies. In this paper, the four-wave mixing process (FWM) in fibers is considered from the frequency domain to the mode division multiplexing (MDM) spatial domain under pump depletion and the exact analytical solution to the FWM coupled-mode equations in the space-frequency domain is in detail deduced. The analytical method is verified by numerically calculating the amplitude and phase evolution of the idler wave in non-degenerate four-wave mixing. We discuss three new applications of the analytical solution as follows. 1) Using the phase matching condition we select the terms in the multi-wave coupling equation, and only retain the coupling term that plays a major role. According to the analytical solution in this paper, the phase matching percentage parameter is introduced to determine the FWM coupling terms necessary for multi-wave coupling equations, thus simplifying the multi-wave coupling problem in the study. 2) Combining the analytical solution with the numerical calculation results, we find the initial phase relationship between the output idler and the input guided wave for phase-insensitive FWM, and we provide the analytical expression for a theoretical basis to efficiently design the FWM-based phase arithmetic devices in parallel operating at WDM and MDM systems. 3) We propose a nonlinear compensation algorithm based on analytical solution, which can be used in the few-mode transmission system. The algorithm can fast evaluate or compensate for the fiber nonlinearity by taking into account the pump depletion of the FWM effect. Compared with the traditional digital back propagation (DBP) algorithm, our algorithm has the advantage of lower complexity.
Wan Feng, Wu Bao-Jian, Cao Ya-Min, Wang Yu-Hao, Wen Feng, Qiu Kun. Analytical method for four wave mixing in space-frequency multiplexing optical fibers. Acta Physica Sinica, 2019, 68(11):
.
doi:10.7498/aps.68.20182129.
Ellis A D, Zhao J, Cotter D 2010 J. Lightwave Technol. 28 423
[2]
Ellis A D, McCarthy M E, Khateeb M A Z A, Sorokina M, Doran N J 2017 Adv. Opt. Photonics 9 429
[3]
Richardson D J, Fini J M, Nelson L E 2013 Nat. Photonics 7 354
[4]
Li G, Bai N, Zhao N, Xia C 2014 Adv. Opt. Photonics 6 413
[5]
Mizuno T, Takara H, Sano A, Miyamoto Y 2016 J. Lightwave Technol. 34 582
[6]
Zheng X J, Ren G B, Huang L, Zheng H L 2016 Acta Phys. Sin. 65 064208[郑兴娟, 任国斌, 黄琳, 郑鹤玲 2016 物理学报 65 064208]
[7]
Rademacher G, Ryf R, Fontaine N K, Chen H, Essiambre R, Puttnam B J, Luís R S, Awaji Y, Wada N, Gross S, Riesen N, Withford M, Sun Y, Lingle R 2018 J. Lightwave Technol. 36 1382
[8]
Kitayama K, Diamantopoulos N 2017 IEEE Commun. Mag. 55 163
[9]
Nazemosadat E, Lorences-Riesgo A, Karlsson M, Andrekson P A 2017 J. Lightwave Technol. 35 2810
[10]
Yao S C, Fu S N, Zhang M M, Tang M, Shen P, Liu D M 2013 Acta Phys. Sin. 62 144215[姚殊畅, 付松年, 张敏明, 唐明, 沈平, 刘德明 2013 物理学报 62 144215]
[11]
Essiambre R J, Kramer G, Winzer P J, Foschini G J, Goebel B 2010 J. Lightwave Technol. 28 662
[12]
Mumtaz S, Essiambre R J, Agrawal G P 2013 J. Lightwave Technol. 31 398
[13]
Suibhne N M, Ellis A D, Gunning F C G, Sygletos S 2013 39th European Conference and Exhibition on Optical Communication London, UK, September 22-26, 2013 p882
[14]
Essiambre R J, Mestre M A, Ryf R, Gnauck A H, Tkach R W, Chraplyvy A R, Sun Y, Jiang X, Lingle Jr R 2013 IEEE Photonics Technol. Lett. 25 539
[15]
Rademacher G, Petermann K 2016 J. Lightwave Technol. 34 2280
[16]
Trichili A, Zghal M, Palmieri L, Santagiustina M 2017 IEEE Photonics J. 9 1
[17]
Marhic M E 2013 J. Opt. Soc. Am. B 30 62
[18]
Cao Y M, Wu B J, Wan F, Qiu K 2018 Acta Phys. Sin. 67 094208[曹亚敏, 武保剑, 万峰, 邱昆 2018 物理学报 67 094208]
[19]
Poletti F, Horak P 2008 J. Opt. Soc. Am. B 25 1645
[20]
Ferreira F, Jansen S, Monteiro P, Silva H 2012 IEEE Photonics Technol. Lett. 24 240
[21]
Antonelli C, Shtaif M, Mecozzi A 2016 J. Lightwave Technol. 34 36
[22]
Rademacher G, Warm S, Petermann K 2012 IEEE Photonics Technol. Lett. 24 1929
[23]
Agrawal G P 2005 Nonlinear Fiber Optics (New York:Academic Press) pp195-211
[24]
Xiao Y, Essiambre R J, Desgroseilliers M, Tulino A M, Ryf R, Mumtaz S, Agrawal G P 2014 Opt. Express 22 32039
[25]
Brehler M, Schirwon M, Göddeke D, Krummrich P M 2017 J. Lightwave Technol. 35 3622
[26]
Hu X, Wang A, Zeng M, Long Y, Zhu L, Fu L, Wang J 2016 Sci. Rep. 6 32911
[27]
Wang A, Hu X, Zhu L, Zeng M, Fu L, Wang J 2015 Opt. Express 23 31728
[28]
Gui C, Wang J 2014 Sci. Rep. 4 7491
[29]
Wang J, Yang J Y, Huang H, Willner A E 2013 Opt. Express 21 488
[30]
Wang J, Yang J, Wu X, Willner A E 2012 J. Lightwave Technol. 30 2890
[31]
Wang J, Nuccio S R, Yang J Y, Wu X, Bogoni A, Willner A E 2012 Opt. Lett. 37 1139
[32]
Tsang M, Psaltis D, Omenetto F G 2003 Opt. Lett. 28 1873