搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用单个压电传感器的单模式兰姆波激发频率的选择

张海燕 曹亚萍 于建波 陈先华

引用本文:
Citation:

采用单个压电传感器的单模式兰姆波激发频率的选择

张海燕, 曹亚萍, 于建波, 陈先华

Actuating frequency selection of single mode Lamb waves using single piezoelectric transducer

Zhang Hai-Yan, Cao Ya-Ping, Yu Jian-Bo, Chen Xian-Hua
PDF
导出引用
  • 考虑了压电传感器(PZT)与板之间的耦合作用,从理论上研究了单个压电传感器激发时产生单模式兰姆波的频率调节方法,实验给出了模式选择在兰姆波结构健康监测中的应用. 在板材、板厚以及PZT尺寸一定的情况下,从理论上能够预测到作为频率函数的各兰姆波模式的幅值变化. 根据某特定兰姆波模式的幅值最大而其他模式幅值相对最小时所对应的频率,即可识别出该兰姆波模式优化的激发频率. 数值仿真验证了理论的有效性以及单模式兰姆波选择的可能性. 在不同的激发频率下,分别激发了优化的A0 模式,优化的S0模式以及共存的A0和S0模
    Considering the interaction between the piezoelectric transducer (PZT) and the plate, a frequency adjusting method of generating single mode Lamb waves using single piezoelectric transducer is presented in theory. The application of mode selection in Lamb wave structural health monitoring is experimentally given. The theory has the ability to predict the amplitude of each Lamb wave mode as a function of frequency for given plate material and thickness, and specific PZT size. Optimal actuating frequency can be identified at which the wave amplitude for a particular mode is maximized while the wave amplitudes for other modes are relatively minimized. Numerical results are presented to validate the theory and show the capability of single mode Lamb wave selection. Different frequencies that correspond to a preferential A0 mode, a preferential S0 mode, and both the A0 and the S0 modes are excited for damage imaging, respectively. The results show that the single Lamb wave mode detection can locate the damage more accurately, demonstrating the importance of the mode selection in Lamb wave structural health monitoring.
    • 基金项目: 国家自然科学基金(批准号: 11074164,10874110)、上海市重点学科项目(批准号:S30108)、上海市科委重点实验室项目(批准号:08DZ2231100)和上海市教委创新基金(批准号: 11YZ17)资助的课题.
    [1]

    Li F C, Meng G 2008 Acta Phys. Sin. 57 4265 (in Chinese) [李富才、孟 光 2008 物理学报 57 4265]

    [2]

    Zhang H Y, Liu Z Q, Ma X S 2003 Acta Phys. Sin. 52 2492 (in Chinese) [张海燕、刘镇清、马小松 2003 物理学报 52 2492]

    [3]

    Xiang Y X, Deng M X 2008 Chin. Phys. B 17 4232

    [4]

    Zhu X F,Liu S C, Xu T, Wang T H, Cheng J C 2010 Chin. Phys. B 19 044301

    [5]

    Zhang H Y, Sun X L, Cao Y P, Chen X H, Yu J B 2010 Acta Phys. Sin. 59 7111 (in Chinese) [张海燕、孙修立、曹亚萍、陈先华、于建波 2010 物理学报 59 7111 ]

    [6]

    Wang B F, Li Y, Shi Y F 2006 J. Nanjing University of Aeronautics & Astronautics 38 613 (in Chinese)[王帮峰、李 迎、施益峰 2006 南京航空航天大学学报 38 613]

    [7]

    Wilcox P D, Lowe M J S, Cawley P 2001 J. Intell. Mater. Syst. Struct. 12 553

    [8]

    Hayashi T, Kawashima K 2003 JSME International Journal, Series A 46 620

    [9]

    Peng G, Yuan S F 2006 Acta Aeronautica & Astronautica Sinica 27 957 (in Chinese)[彭 鸽、袁慎芳 2010 航空学报 2006 27 957]

    [10]

    Liu T, Veidt M, Kitipornchai S 2002 Composite Structures 58 381

    [11]

    Cai J, Yuan S F, Zhang X Y, Wang Q 2010 J. Nanjing University of Aeronautics & Astronautics 42 62(in Chinese)[蔡 建、袁慎芳、张逍越、王 强 2010 南京航空航天大学学报 42 62]

    [12]

    Park H W 2009 Wave Motion 46 451

    [13]

    Xu B L, Giurgiutiu V 2007 J. Nondestruct Eval. 26 123

    [14]

    Yu L, Santoni-Bottai G, Xu B, Liu W, Giurgiutiu V 2008 Fatigue Fract. Engng. Mater. Struct. 31 611

    [15]

    Santoni G B, Yu L Y, Xu B L, Giurgiutiu V 2007 Transactions of the ASME 129 752

    [16]

    Giurgiutiu V 2005 J. Intell. Mater. Syst. Struct. 16 291

    [17]

    Sirohi J, Chopra I 2000 J. Intelligent Material Systems and Structures 11 246

    [18]

    Wang C H, Rose J T, Chang F K 2004 Smart Mater. Struct. 13 415

  • [1]

    Li F C, Meng G 2008 Acta Phys. Sin. 57 4265 (in Chinese) [李富才、孟 光 2008 物理学报 57 4265]

    [2]

    Zhang H Y, Liu Z Q, Ma X S 2003 Acta Phys. Sin. 52 2492 (in Chinese) [张海燕、刘镇清、马小松 2003 物理学报 52 2492]

    [3]

    Xiang Y X, Deng M X 2008 Chin. Phys. B 17 4232

    [4]

    Zhu X F,Liu S C, Xu T, Wang T H, Cheng J C 2010 Chin. Phys. B 19 044301

    [5]

    Zhang H Y, Sun X L, Cao Y P, Chen X H, Yu J B 2010 Acta Phys. Sin. 59 7111 (in Chinese) [张海燕、孙修立、曹亚萍、陈先华、于建波 2010 物理学报 59 7111 ]

    [6]

    Wang B F, Li Y, Shi Y F 2006 J. Nanjing University of Aeronautics & Astronautics 38 613 (in Chinese)[王帮峰、李 迎、施益峰 2006 南京航空航天大学学报 38 613]

    [7]

    Wilcox P D, Lowe M J S, Cawley P 2001 J. Intell. Mater. Syst. Struct. 12 553

    [8]

    Hayashi T, Kawashima K 2003 JSME International Journal, Series A 46 620

    [9]

    Peng G, Yuan S F 2006 Acta Aeronautica & Astronautica Sinica 27 957 (in Chinese)[彭 鸽、袁慎芳 2010 航空学报 2006 27 957]

    [10]

    Liu T, Veidt M, Kitipornchai S 2002 Composite Structures 58 381

    [11]

    Cai J, Yuan S F, Zhang X Y, Wang Q 2010 J. Nanjing University of Aeronautics & Astronautics 42 62(in Chinese)[蔡 建、袁慎芳、张逍越、王 强 2010 南京航空航天大学学报 42 62]

    [12]

    Park H W 2009 Wave Motion 46 451

    [13]

    Xu B L, Giurgiutiu V 2007 J. Nondestruct Eval. 26 123

    [14]

    Yu L, Santoni-Bottai G, Xu B, Liu W, Giurgiutiu V 2008 Fatigue Fract. Engng. Mater. Struct. 31 611

    [15]

    Santoni G B, Yu L Y, Xu B L, Giurgiutiu V 2007 Transactions of the ASME 129 752

    [16]

    Giurgiutiu V 2005 J. Intell. Mater. Syst. Struct. 16 291

    [17]

    Sirohi J, Chopra I 2000 J. Intelligent Material Systems and Structures 11 246

    [18]

    Wang C H, Rose J T, Chang F K 2004 Smart Mater. Struct. 13 415

  • [1] 王坤, 段高燕, 郎佩琳, 赵玉芳, 刘尖斌, 宋钢. 基于银纳米链的马赫-曾德干涉仪结构的生物传感器. 物理学报, 2022, 71(1): 017301. doi: 10.7498/aps.71.20211420
    [2] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器. 物理学报, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [3] 王坤, 段高燕, 郎佩琳, 赵玉芳, 刘尖斌, 宋钢. 基于银纳米链的马赫-曾德干涉仪结构的生物传感器. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211420
    [4] 吴健, 韩文, 程珍珍, 杨彬, 孙利利, 王迪, 朱程鹏, 张勇, 耿明昕, 景龑. 基于流体模型的碳纳米管电离式传感器的结构优化方法. 物理学报, 2021, 70(9): 090701. doi: 10.7498/aps.70.20201828
    [5] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强. 双频带太赫兹超材料吸波体传感器传感特性. 物理学报, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [6] 曹亚庆, 黄火林, 孙仲豪, 李飞雨, 白洪亮, 张卉, 孙楠, Yung C.Liang. 基于宽禁带GaN基异质结结构的垂直型高温霍尔传感器. 物理学报, 2019, 68(15): 158502. doi: 10.7498/aps.68.20190413
    [7] 方云团, 王誉雅, 夏景. 基于光学Parity-Time对称微腔结构的大范围电场传感器. 物理学报, 2019, 68(19): 194201. doi: 10.7498/aps.68.20190784
    [8] 焦敬品, 李海平, 何存富, 吴斌, 薛岩. 基于反转路径差信号的兰姆波成像方法. 物理学报, 2019, 68(12): 124301. doi: 10.7498/aps.68.20190101
    [9] 倪龙, 陈晓. 基于频散补偿和分数阶微分的多模式兰姆波分离. 物理学报, 2018, 67(20): 204301. doi: 10.7498/aps.67.20180561
    [10] 张海燕, 徐梦云, 张辉, 朱文发, 柴晓冬. 利用扩散场信息的超声兰姆波全聚焦成像. 物理学报, 2018, 67(22): 224301. doi: 10.7498/aps.67.20181268
    [11] 张海燕, 杨杰, 范国鹏, 朱文发, 柴晓冬. 基于模式分离的兰姆波逆时偏移成像. 物理学报, 2017, 66(21): 214301. doi: 10.7498/aps.66.214301
    [12] 廖文英, 范万德, 李海鹏, 隋佳男, 曹学伟. 准晶体结构光纤表面等离子体共振传感器特性研究. 物理学报, 2015, 64(6): 064213. doi: 10.7498/aps.64.064213
    [13] 宋佳, 罗清华, 彭喜元. 基于节点健康度的无线传感器网络冗余通路控制方法. 物理学报, 2014, 63(12): 128401. doi: 10.7498/aps.63.128401
    [14] 陈晓, 汪陈龙. 基于赛利斯模型和分数阶微分的兰姆波信号消噪. 物理学报, 2014, 63(18): 184301. doi: 10.7498/aps.63.184301
    [15] 冯李航, 曾捷, 梁大开, 张为公. 契形结构光纤表面等离子体共振传感器研究. 物理学报, 2013, 62(12): 124207. doi: 10.7498/aps.62.124207
    [16] 马玺越, 陈克安, 丁少虎, 张冰瑞. 用于三层有源隔声结构误差传感的压电传感薄膜阵列及其优化设计. 物理学报, 2013, 62(12): 124301. doi: 10.7498/aps.62.124301
    [17] 丁红星, 沈中华, 李加, 祝雪丰, 倪晓武. 复合兰姆波声子晶体中超宽部分禁带. 物理学报, 2012, 61(19): 196301. doi: 10.7498/aps.61.196301
    [18] 王泽锋, 胡永明, 罗洪, 孟洲, 倪明, 熊水东. 腔壁弹性对水下小型圆柱形亥姆霍兹共振器共振频率的影响. 物理学报, 2009, 58(4): 2507-2512. doi: 10.7498/aps.58.2507
    [19] 俞阿龙. 基于小波神经网络的振动速度传感器幅频特性补偿研究. 物理学报, 2007, 56(6): 3166-3171. doi: 10.7498/aps.56.3166
    [20] 高艳涛, 张晓丹, 赵 颖, 孙 建, 朱 峰, 魏长春. 激发频率对VHF-PECVD制备微晶硅材料性能的影响. 物理学报, 2006, 55(3): 1497-1501. doi: 10.7498/aps.55.1497
计量
  • 文章访问数:  9300
  • PDF下载量:  1033
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-10-14
  • 修回日期:  2011-01-25
  • 刊出日期:  2011-11-15

/

返回文章
返回