搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于赛利斯模型和分数阶微分的兰姆波信号消噪

陈晓 汪陈龙

基于赛利斯模型和分数阶微分的兰姆波信号消噪

陈晓, 汪陈龙
PDF
导出引用
  • 为降低噪声对超声兰姆波检测信号的影响,提高信噪比和增加特征提取的精度,提出了一种赛利斯模型下分数阶微分方法用于超声兰姆波信号去噪. 该方法对含噪声的兰姆波信号幅值谱进行各阶分数微分,用赛利斯分布作为待处幅值谱的模型,提出了幅值谱分数阶微分最大值和过零点与微分阶数的拟合三次关系式,建立了幅值谱特征参数的计算式来提取特征参数和重建原始信号的幅值谱,并结合相位谱重构去噪后的兰姆波信号. 仿真结果表明,该方法可以有效地提高兰姆波信号甚至微弱兰姆波信号的信噪比,同时降低均方误差和平滑度. 实验结果显示,与小波去噪和集合经验模态去噪方法相比,该方法在没有信号先验知识的情况下,可以更有效地去除兰姆波信号的噪声,同时更好地保留主信号的细节特征. 因此,本文提出的方法可以有效地去除兰姆波检测信号中混入的噪声.
    • 基金项目: 国家自然科学基金(批准号:10904073)和江苏高校优势学科Ⅱ期建设工程资助项目资助的课题.
    [1]

    Hong K, Yuan L, Shen Z H, Ni X W 2011 Acta Phys. Sin. 60 104303(in Chinese)[洪轲, 袁玲, 沈中华, 倪晓武 2011 物理学报 60 104303]

    [2]

    Pavlopoulou S, Soutis C, Manson G 2012 Plastics, Rubber Compos. 41 61

    [3]

    Zhang H Y, Cao Y P, Yu J B, Chen X H 2011 Acta Phys. Sin. 60 114301(in Chinese)[张海燕, 曹亚萍, 于建波, 陈先华 2011 物理学报 60 114301]

    [4]

    Ding H X, Shen Z H, Li J, Zhu X F, Ni X W 2012 Acta Phys. Sin. 61 196301(in Chinese)[丁红星, 沈中华, 李加, 祝雪丰, 倪晓武 2012 物理学报 61 196301]

    [5]

    Zhang H Y, Yu J B 2011 Chin. Phys. B 20 094301

    [6]

    Deng M X, Xiang Y X 2010 Chin. Phys. B 19 115202

    [7]

    Zhang H Y, Yao J C, Ma S W 2014 Chin. Phys. Lett. 31 034301

    [8]

    Beard M D, Lowe M J S 2003 Rock Mech. Mining Sci. 40 527

    [9]

    Laguerre L, Treyssede F 2011 Eur. J. Environ. Civil Eng. 15 487

    [10]

    Prado V T, Higuti R T 2013 NDT&E International 59 86

    [11]

    Cawley P, Lowe M J S, Alleyne D N, Pavlakovic B N, Wilcox P 2003 Mater. Eval. 61 66

    [12]

    Chen X, Wan M 2005 Ultrasonics 43 357

    [13]

    Lu Y, Ye L 2009 J. Compos. Mater. 43 26

    [14]

    Liu Z Q, Zhang H Y, Ma X S 2003 Acta Phys. Sin. 52 2492(in Chinese)[刘镇清, 张海燕, 马小松 2003 物理学报 52 2492]

    [15]

    Abbate A, Koay J 1997 IEEE Trans. Ultrason. Ferroelect. Freq. Contr.44 14

    [16]

    Pardo E, Emeterio J, Rodriguez M, Ramos A 2006 Ultrasonics 44 1063

    [17]

    Boudraa A O, Cexus J C, Saidi Z 2004 Int. J. Signal Process. 1 1

    [18]

    Wu Z H, Huang N E 2009 Adv. Adapt. Data Anal. 1 1

    [19]

    Chen X, Li J 2013 J. Vibroengineer. 15 1157

    [20]

    Zhang X P 2001 IEEE Trans. Neural Networks 12 567

    [21]

    Zhang Y 2013 Acta Phys. Sin. 62 164501(in Chinese)[张毅 2013 物理学报 62 164501]

    [22]

    Hu J B, Zhao L D 2013 Acta Phys. Sin. 62 240504(in Chinese)[胡建兵, 赵灵冬 2013 物理学报 62 240504]

    [23]

    Xin B G, Chen T, Liu Y Q 2011 Acta Phys. Sin. 60 048901(in Chinese)[辛宝贵, 陈通, 刘艳芹 2011 物理学报 60 048901]

    [24]

    Podlubny I 1999 IEEE Trans. Automatic Control 44 208

    [25]

    Pu Y F, Wang W X 2008 Sci. China F: Inform. Sci. 51 1319

    [26]

    Samko S C, kilbas A A, Marichev D I 1993 Fractional Integrals and Derivatives: Theory and Applications (Switzerland: Cordon and Breach Science Publishers) p21

    [27]

    Tsallis C 1988 J. Statist. Phys. 52 479

    [28]

    Li Y L, Yu S L 2007 Sci. China B: Chemistry 50 797

    [29]

    Xu B, Giurgiutiu V, Yu L 2009 SPIE 7292 72920I

  • [1]

    Hong K, Yuan L, Shen Z H, Ni X W 2011 Acta Phys. Sin. 60 104303(in Chinese)[洪轲, 袁玲, 沈中华, 倪晓武 2011 物理学报 60 104303]

    [2]

    Pavlopoulou S, Soutis C, Manson G 2012 Plastics, Rubber Compos. 41 61

    [3]

    Zhang H Y, Cao Y P, Yu J B, Chen X H 2011 Acta Phys. Sin. 60 114301(in Chinese)[张海燕, 曹亚萍, 于建波, 陈先华 2011 物理学报 60 114301]

    [4]

    Ding H X, Shen Z H, Li J, Zhu X F, Ni X W 2012 Acta Phys. Sin. 61 196301(in Chinese)[丁红星, 沈中华, 李加, 祝雪丰, 倪晓武 2012 物理学报 61 196301]

    [5]

    Zhang H Y, Yu J B 2011 Chin. Phys. B 20 094301

    [6]

    Deng M X, Xiang Y X 2010 Chin. Phys. B 19 115202

    [7]

    Zhang H Y, Yao J C, Ma S W 2014 Chin. Phys. Lett. 31 034301

    [8]

    Beard M D, Lowe M J S 2003 Rock Mech. Mining Sci. 40 527

    [9]

    Laguerre L, Treyssede F 2011 Eur. J. Environ. Civil Eng. 15 487

    [10]

    Prado V T, Higuti R T 2013 NDT&E International 59 86

    [11]

    Cawley P, Lowe M J S, Alleyne D N, Pavlakovic B N, Wilcox P 2003 Mater. Eval. 61 66

    [12]

    Chen X, Wan M 2005 Ultrasonics 43 357

    [13]

    Lu Y, Ye L 2009 J. Compos. Mater. 43 26

    [14]

    Liu Z Q, Zhang H Y, Ma X S 2003 Acta Phys. Sin. 52 2492(in Chinese)[刘镇清, 张海燕, 马小松 2003 物理学报 52 2492]

    [15]

    Abbate A, Koay J 1997 IEEE Trans. Ultrason. Ferroelect. Freq. Contr.44 14

    [16]

    Pardo E, Emeterio J, Rodriguez M, Ramos A 2006 Ultrasonics 44 1063

    [17]

    Boudraa A O, Cexus J C, Saidi Z 2004 Int. J. Signal Process. 1 1

    [18]

    Wu Z H, Huang N E 2009 Adv. Adapt. Data Anal. 1 1

    [19]

    Chen X, Li J 2013 J. Vibroengineer. 15 1157

    [20]

    Zhang X P 2001 IEEE Trans. Neural Networks 12 567

    [21]

    Zhang Y 2013 Acta Phys. Sin. 62 164501(in Chinese)[张毅 2013 物理学报 62 164501]

    [22]

    Hu J B, Zhao L D 2013 Acta Phys. Sin. 62 240504(in Chinese)[胡建兵, 赵灵冬 2013 物理学报 62 240504]

    [23]

    Xin B G, Chen T, Liu Y Q 2011 Acta Phys. Sin. 60 048901(in Chinese)[辛宝贵, 陈通, 刘艳芹 2011 物理学报 60 048901]

    [24]

    Podlubny I 1999 IEEE Trans. Automatic Control 44 208

    [25]

    Pu Y F, Wang W X 2008 Sci. China F: Inform. Sci. 51 1319

    [26]

    Samko S C, kilbas A A, Marichev D I 1993 Fractional Integrals and Derivatives: Theory and Applications (Switzerland: Cordon and Breach Science Publishers) p21

    [27]

    Tsallis C 1988 J. Statist. Phys. 52 479

    [28]

    Li Y L, Yu S L 2007 Sci. China B: Chemistry 50 797

    [29]

    Xu B, Giurgiutiu V, Yu L 2009 SPIE 7292 72920I

  • [1] 倪龙, 陈晓. 基于频散补偿和分数阶微分的多模式兰姆波分离. 物理学报, 2018, 67(20): 204301. doi: 10.7498/aps.67.20180561
    [2] 刘柏年, 皇群博, 张卫民, 任开军, 曹小群, 赵军. 集合背景误差方差中小波阈值去噪方法研究及试验. 物理学报, 2017, 66(2): 020505. doi: 10.7498/aps.66.020505
    [3] 张海燕, 杨杰, 范国鹏, 朱文发, 柴晓冬. 基于模式分离的兰姆波逆时偏移成像. 物理学报, 2017, 66(21): 214301. doi: 10.7498/aps.66.214301
    [4] 焦敬品, 李海平, 何存富, 吴斌, 薛岩. 基于反转路径差信号的兰姆波成像方法. 物理学报, 2019, 68(12): 124301. doi: 10.7498/aps.68.20190101
    [5] 李广明, 吕善翔. 混沌信号的压缩感知去噪. 物理学报, 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [6] 张海燕, 曹亚萍, 于建波, 陈先华. 采用单个压电传感器的单模式兰姆波激发频率的选择. 物理学报, 2011, 60(11): 114301. doi: 10.7498/aps.60.114301
    [7] 张海燕, 徐梦云, 张辉, 朱文发, 柴晓冬. 利用扩散场信息的超声兰姆波全聚焦成像. 物理学报, 2018, 67(22): 224301. doi: 10.7498/aps.67.20181268
    [8] 王梦蛟, 周泽权, 李志军, 曾以成. 混沌信号自适应协同滤波去噪. 物理学报, 2018, 67(6): 060501. doi: 10.7498/aps.67.20172470
    [9] 王梦蛟, 吴中堂, 冯久超. 一种参数优化的混沌信号自适应去噪算法. 物理学报, 2015, 64(4): 040503. doi: 10.7498/aps.64.040503
    [10] 丁红星, 沈中华, 李加, 祝雪丰, 倪晓武. 复合兰姆波声子晶体中超宽部分禁带. 物理学报, 2012, 61(19): 196301. doi: 10.7498/aps.61.196301
    [11] 申永军, 杨绍普, 邢海军. 含分数阶微分的线性单自由度振子的动力学分析(Ⅱ). 物理学报, 2012, 61(15): 150503. doi: 10.7498/aps.61.150503
    [12] 张玉, 谢映海, 杨维. 离散空间上的最小能量框架及其在矩形脉冲信号去噪中的应用研究. 物理学报, 2010, 59(11): 8255-8263. doi: 10.7498/aps.59.8255
    [13] 申永军, 杨绍普, 邢海军. 含分数阶微分的线性单自由度振子的动力学分析 . 物理学报, 2012, 61(11): 110505. doi: 10.7498/aps.61.110505
    [14] 韦鹏, 申永军, 杨绍普. 分数阶van der Pol振子的超谐共振. 物理学报, 2014, 63(1): 010503. doi: 10.7498/aps.63.010503
    [15] 温少芳, 申永军, 杨绍普. 分数阶时滞反馈对Duffing振子动力学特性的影响. 物理学报, 2016, 65(9): 094502. doi: 10.7498/aps.65.094502
    [16] 王世元, 史春芬, 钱国兵, 王万里. 基于分数阶最大相关熵算法的混沌时间序列预测. 物理学报, 2018, 67(1): 018401. doi: 10.7498/aps.67.20171803
    [17] 张玉燕, 周航, 闫美素. 基于经验模态分解的自混合干涉相位提取方法研究. 物理学报, 2015, 64(5): 054203. doi: 10.7498/aps.64.054203
    [18] 周先春, 汪美玲, 周林锋, 吴琴. 基于Demons算法改进的图像去噪模型研究. 物理学报, 2015, 64(2): 024205. doi: 10.7498/aps.64.024205
    [19] 李静和, 何展翔, 杨俊, 孟淑君, 李文杰, 廖小倩. 曲波域统计量自适应阈值探地雷达数据去噪技术. 物理学报, 2019, 68(9): 090501. doi: 10.7498/aps.68.20182061
    [20] 牛明生, 王贵师. 基于可调谐二极管激光技术利用小波去噪在2.008 μm波段对δ13CO2的研究(已撤稿). 物理学报, 2017, 66(2): 024202. doi: 10.7498/aps.66.024202
  • 引用本文:
    Citation:
计量
  • 文章访问数:  884
  • PDF下载量:  348
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-17
  • 修回日期:  2014-04-15
  • 刊出日期:  2014-09-05

基于赛利斯模型和分数阶微分的兰姆波信号消噪

  • 1. 南京信息工程大学, 江苏省气象探测与信息处理重点实验室, 南京 210044;
  • 2. 南京信息工程大学电子与信息工程学院, 南京 210044
    基金项目: 

    国家自然科学基金(批准号:10904073)和江苏高校优势学科Ⅱ期建设工程资助项目资助的课题.

摘要: 为降低噪声对超声兰姆波检测信号的影响,提高信噪比和增加特征提取的精度,提出了一种赛利斯模型下分数阶微分方法用于超声兰姆波信号去噪. 该方法对含噪声的兰姆波信号幅值谱进行各阶分数微分,用赛利斯分布作为待处幅值谱的模型,提出了幅值谱分数阶微分最大值和过零点与微分阶数的拟合三次关系式,建立了幅值谱特征参数的计算式来提取特征参数和重建原始信号的幅值谱,并结合相位谱重构去噪后的兰姆波信号. 仿真结果表明,该方法可以有效地提高兰姆波信号甚至微弱兰姆波信号的信噪比,同时降低均方误差和平滑度. 实验结果显示,与小波去噪和集合经验模态去噪方法相比,该方法在没有信号先验知识的情况下,可以更有效地去除兰姆波信号的噪声,同时更好地保留主信号的细节特征. 因此,本文提出的方法可以有效地去除兰姆波检测信号中混入的噪声.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回