搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分数阶van der Pol振子的超谐共振

韦鹏 申永军 杨绍普

分数阶van der Pol振子的超谐共振

韦鹏, 申永军, 杨绍普
PDF
导出引用
导出核心图
  • 以含分数阶微分项的van der Pol振子为对象,研究其超谐共振时的动力学特性. 首先,通过平均法得到了系统的一阶近似解,提出了超谐共振时等效线性阻尼和等效线性刚度的概念,研究了分数阶微分项的系数和阶次以等效线性阻尼和等效线性刚度的形式对系统动力学特性的影响. 随后,建立了超谐共振时定常解的幅频曲线的解析表达式,得到了超谐共振周期响应的稳定性判断准则并提出等效非线性阻尼和非线性稳定性条件参数的概念. 最后,通过数值仿真比较了分数阶与整数阶系统的幅频曲线,分析了分数阶微分项的系数和阶次对响应幅值、幅频曲线以及系统稳定性的影响.
    • 基金项目: 国家自然科学基金(批准号:11072158,11372198)和教育部新世纪优秀人才支持计划(批准号:NCET-11-0936)资助的课题
    [1]

    Shen Y J, Yang S P, Xing H J 2012 Acta Phys. Sin. 61 110505 (in Chinese) [申永军, 杨绍普, 邢海军 2012 物理学报 61 110505]

    [2]

    Shen Y J, Yang S P, Xing H J 2012 Acta Phys. Sin. 61 150503 (in Chinese) [申永军, 杨绍普, 邢海军 2012 物理学报 61 150503]

    [3]

    Shen Y J, Yang S P, Xing H J, Gao G S 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 3092

    [4]

    Shen Y J, Yang S P, Xing H J, Ma H X 2012 Int. J. Non-Linear Mech. 47 975

    [5]

    Gorenflo R, Abdel R E A 2007 J. Comput. Appl. Mathe. 205 871

    [6]

    Jumarie G 2006 Compu. Mathe. Appl. 51 1367

    [7]

    Ishteva M, Scherer R, Boyadjiev L 2005 Mathe. Sciences Research J. 9 161

    [8]

    Agnieszka B M, Delfim F M T 2011 Fract. Calc. Appl. Anal. 14 523

    [9]

    Wang Z H, Du M L 2011 Shock Vib. 18 257

    [10]

    Wang Z H, Hu H Y 2009 Science in China Series G: Phys. Mech. Astron. 39 1495 (in Chinese) [王在华, 胡海岩 2009 中国科学G辑: 物理学力学天文学 39 1495]

    [11]

    Wang Z H, Hu H Y 2010 Sci. Chin. Phys. Mech. Astron. 53 345

    [12]

    Shi M, Wang Z H 2013 Science Sinica: Phys. Mech. Astron. 43 467 (in Chinese) [石敏, 王在华 2013 中国科学: 物理学力学天文学 43 467]

    [13]

    Yang J H, Zhu H 2013 Acta Phys. Sin. 62 024501 (in Chinese) [杨建华, 朱华 2013 物理学报 62 024501]

    [14]

    Gu R C, Xu Y, Zhang H Q, Sun Z K 2011 Acta Phys. Sin. 60 110514 (in Chinese) [顾仁财, 许勇, 张慧清, 孙中奎 2011 物理学报 60 110514]

    [15]

    Cao J X, Ding H F, Li C P 2013 Commun. Appl. Mathe. Comput. 27 61 (in Chinese) [曹建雄, 丁恒飞, 李常品 2013 应用数学与计算数学学报 27 61]

    [16]

    Jia H Y, Chen Z Q, Xue W 2013 Acta Phys. Sin. 62 140503 (in Chinese) [贾红艳, 陈增强, 薛薇 2011 物理学报 62 140503]

    [17]

    Chen L C, Zhu W Q 2009 J. Vib. Control. 15 1247

    [18]

    Huang Z L, Jin X L 2009 J. Sound Vib. 319 1121

    [19]

    Yin H, Chen N 2012 Chin. J. Comput. Mech. 29 966 (in Chinese) [银花, 陈宁 2012 计算力学学报 29 966]

    [20]

    Zhou C Y, Li G L, Zhang C, Chi B Y, Li D M, Wang Z H 2009 J. Semicon. 30 075008

    [21]

    Wu R C, Hei X D, Chen L P 2013 Commun. Theor. Phys. 60 189

    [22]

    Zhou G Q, Wang X G, Chu X X 2013 Science China: Phys. Mech. Astron. 56 1487

    [23]

    Zeng F H, Li C P 2013 Chin. J. Comput. Phys. 30 491 (in Chinese) [曾凡海, 李常品 2013 计算物理 30 491]

    [24]

    Li C P, Zhao Z G 2009 J. Shanghai Univ. (Engl. Ed.) 13 197 (in Chinese) [李常品, 赵振刚 2009 上海大学学报(英文版) 13 197]

    [25]

    Hu J B, Zhao L D, Xie Z G 2013 Chin. Phys. B 22 080506

    [26]

    Rajneesh K, Vandana G 2013 Chin. Phys. B 22 074601

    [27]

    Tian Y S 2013 Acta. Mathe. Appl. Sin. 29 661

    [28]

    Liu D, Xu W, Xu Y 2013 Acta. Mech. Sin. 29 443

    [29]

    Lan Y H, Li W J, Zhou Y, Luo Y P 2013 Inter. J. Auto. Comput. 10 296

    [30]

    Kumar R, Gupta V 2013 Chin. Phys. B 22 074601

    [31]

    Wang H Q 1992 Nonlinear Vibration (Bei Jing: Higher Education Press) p131 (in Chinese) [王海期 1992 非线性振动 (北京: 高等教育出版社) 第131页]

    [32]

    Leung A Y T, Yang H X, Guo Z J 2012 J. Sound Vib. 331 1115

    [33]

    Sardar T, Ray S S, Bera R K, Biswas B B 2009 Phys. Scr. 80 025003

    [34]

    Xie F, Lin X Y 2009 Phys. Scr. 136 014033

    [35]

    Chu Y Q, Li C Y 1996 Analysis of Nonlinear Vibrations (Beijing: Beijing Institute of Technology Press) pp828–832 (in Chinese) [褚亦清, 李翠英 1996 非线性振动分析 (北京: 北京理工大学出版社) 第828–832页]

  • [1]

    Shen Y J, Yang S P, Xing H J 2012 Acta Phys. Sin. 61 110505 (in Chinese) [申永军, 杨绍普, 邢海军 2012 物理学报 61 110505]

    [2]

    Shen Y J, Yang S P, Xing H J 2012 Acta Phys. Sin. 61 150503 (in Chinese) [申永军, 杨绍普, 邢海军 2012 物理学报 61 150503]

    [3]

    Shen Y J, Yang S P, Xing H J, Gao G S 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 3092

    [4]

    Shen Y J, Yang S P, Xing H J, Ma H X 2012 Int. J. Non-Linear Mech. 47 975

    [5]

    Gorenflo R, Abdel R E A 2007 J. Comput. Appl. Mathe. 205 871

    [6]

    Jumarie G 2006 Compu. Mathe. Appl. 51 1367

    [7]

    Ishteva M, Scherer R, Boyadjiev L 2005 Mathe. Sciences Research J. 9 161

    [8]

    Agnieszka B M, Delfim F M T 2011 Fract. Calc. Appl. Anal. 14 523

    [9]

    Wang Z H, Du M L 2011 Shock Vib. 18 257

    [10]

    Wang Z H, Hu H Y 2009 Science in China Series G: Phys. Mech. Astron. 39 1495 (in Chinese) [王在华, 胡海岩 2009 中国科学G辑: 物理学力学天文学 39 1495]

    [11]

    Wang Z H, Hu H Y 2010 Sci. Chin. Phys. Mech. Astron. 53 345

    [12]

    Shi M, Wang Z H 2013 Science Sinica: Phys. Mech. Astron. 43 467 (in Chinese) [石敏, 王在华 2013 中国科学: 物理学力学天文学 43 467]

    [13]

    Yang J H, Zhu H 2013 Acta Phys. Sin. 62 024501 (in Chinese) [杨建华, 朱华 2013 物理学报 62 024501]

    [14]

    Gu R C, Xu Y, Zhang H Q, Sun Z K 2011 Acta Phys. Sin. 60 110514 (in Chinese) [顾仁财, 许勇, 张慧清, 孙中奎 2011 物理学报 60 110514]

    [15]

    Cao J X, Ding H F, Li C P 2013 Commun. Appl. Mathe. Comput. 27 61 (in Chinese) [曹建雄, 丁恒飞, 李常品 2013 应用数学与计算数学学报 27 61]

    [16]

    Jia H Y, Chen Z Q, Xue W 2013 Acta Phys. Sin. 62 140503 (in Chinese) [贾红艳, 陈增强, 薛薇 2011 物理学报 62 140503]

    [17]

    Chen L C, Zhu W Q 2009 J. Vib. Control. 15 1247

    [18]

    Huang Z L, Jin X L 2009 J. Sound Vib. 319 1121

    [19]

    Yin H, Chen N 2012 Chin. J. Comput. Mech. 29 966 (in Chinese) [银花, 陈宁 2012 计算力学学报 29 966]

    [20]

    Zhou C Y, Li G L, Zhang C, Chi B Y, Li D M, Wang Z H 2009 J. Semicon. 30 075008

    [21]

    Wu R C, Hei X D, Chen L P 2013 Commun. Theor. Phys. 60 189

    [22]

    Zhou G Q, Wang X G, Chu X X 2013 Science China: Phys. Mech. Astron. 56 1487

    [23]

    Zeng F H, Li C P 2013 Chin. J. Comput. Phys. 30 491 (in Chinese) [曾凡海, 李常品 2013 计算物理 30 491]

    [24]

    Li C P, Zhao Z G 2009 J. Shanghai Univ. (Engl. Ed.) 13 197 (in Chinese) [李常品, 赵振刚 2009 上海大学学报(英文版) 13 197]

    [25]

    Hu J B, Zhao L D, Xie Z G 2013 Chin. Phys. B 22 080506

    [26]

    Rajneesh K, Vandana G 2013 Chin. Phys. B 22 074601

    [27]

    Tian Y S 2013 Acta. Mathe. Appl. Sin. 29 661

    [28]

    Liu D, Xu W, Xu Y 2013 Acta. Mech. Sin. 29 443

    [29]

    Lan Y H, Li W J, Zhou Y, Luo Y P 2013 Inter. J. Auto. Comput. 10 296

    [30]

    Kumar R, Gupta V 2013 Chin. Phys. B 22 074601

    [31]

    Wang H Q 1992 Nonlinear Vibration (Bei Jing: Higher Education Press) p131 (in Chinese) [王海期 1992 非线性振动 (北京: 高等教育出版社) 第131页]

    [32]

    Leung A Y T, Yang H X, Guo Z J 2012 J. Sound Vib. 331 1115

    [33]

    Sardar T, Ray S S, Bera R K, Biswas B B 2009 Phys. Scr. 80 025003

    [34]

    Xie F, Lin X Y 2009 Phys. Scr. 136 014033

    [35]

    Chu Y Q, Li C Y 1996 Analysis of Nonlinear Vibrations (Beijing: Beijing Institute of Technology Press) pp828–832 (in Chinese) [褚亦清, 李翠英 1996 非线性振动分析 (北京: 北京理工大学出版社) 第828–832页]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1880
  • PDF下载量:  817
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-04
  • 修回日期:  2013-09-29
  • 刊出日期:  2014-01-05

分数阶van der Pol振子的超谐共振

  • 1. 石家庄铁道大学机械工程学院, 石家庄 050043
    基金项目: 

    国家自然科学基金(批准号:11072158,11372198)和教育部新世纪优秀人才支持计划(批准号:NCET-11-0936)资助的课题

摘要: 以含分数阶微分项的van der Pol振子为对象,研究其超谐共振时的动力学特性. 首先,通过平均法得到了系统的一阶近似解,提出了超谐共振时等效线性阻尼和等效线性刚度的概念,研究了分数阶微分项的系数和阶次以等效线性阻尼和等效线性刚度的形式对系统动力学特性的影响. 随后,建立了超谐共振时定常解的幅频曲线的解析表达式,得到了超谐共振周期响应的稳定性判断准则并提出等效非线性阻尼和非线性稳定性条件参数的概念. 最后,通过数值仿真比较了分数阶与整数阶系统的幅频曲线,分析了分数阶微分项的系数和阶次对响应幅值、幅频曲线以及系统稳定性的影响.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回