搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类位于加周期分岔中的貌似混沌的随机神经放电节律的识别

古华光 惠磊 贾冰

一类位于加周期分岔中的貌似混沌的随机神经放电节律的识别

古华光, 惠磊, 贾冰
PDF
导出引用
导出核心图
  • 识别非周期神经放电节律是混沌还是随机一直是一个重要的科学问题. 在神经起步点实验中发现了一类介于周期k和周期k+1(k=1,2)节律之间非周期自发放电节律, 其行为是长串的周期k簇和周期k+1簇的交替. 确定性理论模型Chay模型展示出了周期k和周期k+1节律的共存行为. 噪声在共存区诱发出了与实验结果类似的非周期节律, 说明该类节律是噪声引起的两类簇的跃迁. 非线性预报及其回归映射揭示该节律具有确定性机理; 将两类簇分别转换为0和1得到一个二进制序列, 对该序列进行概率分析获得了两类簇跃迁的随机机理. 这不仅说明该节律是具有确定性结构的随机节律而不是混沌, 还为深入识别现实神经系统的混沌和随机节律提供了典型示例和有效方法.
      通信作者: , guhuaguang@263.net
    • 基金项目: 国家自然科学基金(批准号: 11072135, 10772101, 10432010, 30300107)和中央高等学校基本科研基金(批准号: GK200902025)资助的课题.
    [1]

    May R M 1976 Nature 261 459

    [2]

    Gammaitoni L, Hänggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 22

    [3]

    Hayashi H, Ishzuka S, Ohta M, Hirakawa K 1982 Phys. Lett. A 88 435

    [4]

    Hayashi H, Ishzuka S, Hirakawa K 1983 Phys. Lett. A 98 474

    [5]

    Aihara K, Matsumoto G, Ikegaya Y 1984 J. Theor. Biol. 109 249

    [6]

    Hayashi H, Ishzuka S 1992 J. Theor. Biol. 156 269

    [7]

    Li L, Gu H G, Yang M H, Liu Z Q, Ren W 2004 Int. J. Bifur. Chaos 14 1813

    [8]

    Wang D, Mo J, Zhao X Y, Gu H G, Qu S X, Ren W 2010 Chin. Phys. Lett. 27 070503

    [9]

    Gu H G, Zhu Z, Jia B 2011 Acta Phys. Sin. 60 100505 (in Chinese) [古华光, 朱洲, 贾冰 2011 物理学报 60 100505]

    [10]

    Yang M H, Liu Z Q, Li L, Xu Y L, Liu H J, Gu H G, Ren W 2009 Int. J. Bifur. Chaos 19 453

    [11]

    Ren W, Hu S J, Zhang B J, Xu J X, Gong Y F 1997 Int. J. Bifur. Chaos. 7 1867

    [12]

    Gu H G, Yang M H, Li L, Liu Z Q, Ren W 2004 Dynam. Contin. Dis. B 11 19

    [13]

    Zhao X Y, Song S L, Wei C L, Gu H G, Ren W 2010 Acta Biophys. Sin. 26 61 (in Chinese) [赵小燕, 宋绍丽, 魏春玲, 古华光, 任维 2010 生物物理学报 26 61]

    [14]

    Xie Y, Xu J X, Kang Y M, Hu S J, Duan Y B 2003 Acta Phys. Sin. 52 1112 (in Chinese) [谢勇, 徐健学, 康艳梅, 胡三觉, 段玉斌 2003 物理学报 52 1112]

    [15]

    Fan Y S, Holden A V 1993 Chaos Solitons Fract. 3 439

    [16]

    Chay T R 1985 Physica D 16 233

    [17]

    Wu S G, He D R 2000 Chin. Phys. Lett. 76 398

    [18]

    Wu S G, He D R 2001 Commun. Theor. Phys. 35 272

    [19]

    Schiff S J, Jerger K, Duong D H 1994 Nature 370 615

    [20]

    Thomas E, William J R, Zbigniew J K, James E S, Karl E G, Niels B 1994 Physiol. Rev. 74 1

    [21]

    Lovejoy L P, Shepard P D, Canavier C C 2001 Neuroscience 104 829

    [22]

    Kanno T, Miyano T, Tokudac I, Galvanovskisd J, Wakui M 2007 Physica D 226 107

    [23]

    Hu S J, Yang H J, Jian Z, Long K P, Duan Y B, Wan Y H, Xing J L, Xu H, Ju G 2000 Neuroscience 101 689

    [24]

    So P 1998 Biophys J. 74 2776

    [25]

    Jian Z, Xing J L, Yang G S, Hu S J 2004 Neurosignals 13 150

    [26]

    Wan Y H, Jian Z, Hu S J 2000 Neuroreport 11 3295

    [27]

    Longtin A, Bulsara A, Moss F 1991 Phys. Rev. Lett. 67 656

    [28]

    Braun H A, Wissing H, Schäfer K, Hirsch M C 1994 Nature 367 270

    [29]

    Xing J L, Hu S J, Xu H, Han S, Wan Y H 2001 Neuroreport 12 1311

    [30]

    Gu H G, Ren W, Lu Q S, Wu S G, Yang M H, Chen W J 2001 Phys. Lett. A 285 63

    [31]

    Gong P L, Xu J X, Hu S J, Long K P 2002 Int. J. Bifur. Chaos 12 319

    [32]

    Gu H G, Jia B, Lu Q S 2011 Cogn. Neurodyn. 5 87

    [33]

    Gu H G, Zhang H M, Wei C L, Yang M H, Liu Z Q, Ren W 2011 Int. J. Mod. Phys. B 25 3977

    [34]

    Jia B, Gu H G, Li Y Y 2011 Chin. Phys. Lett. 28 090507

    [35]

    Huber M T, Krige J C, Braun H A, Pei X, Neiman A, Moss F 2000 Neurocomputing 32---33 823

    [36]

    Gu H G, Yang M H, Li L, Liu Z Q, Ren W 2003 Phys. Lett. A 319 89

    [37]

    Gu H G, Yang M H, Li L, Liu Z Q, Ren W 2003 Int. J. Mod. Phys. B 17 4195

    [38]

    Mannella R, Palleschi V 1989 Phys. Rev. A 40 3381

    [39]

    Theiler J, Eubank S, Longtin A, Galdrinkian B 1992 Physica D 58 77

    [40]

    Sauer T 1994 Phys. Rev. Lett. 72 3811

  • [1]

    May R M 1976 Nature 261 459

    [2]

    Gammaitoni L, Hänggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 22

    [3]

    Hayashi H, Ishzuka S, Ohta M, Hirakawa K 1982 Phys. Lett. A 88 435

    [4]

    Hayashi H, Ishzuka S, Hirakawa K 1983 Phys. Lett. A 98 474

    [5]

    Aihara K, Matsumoto G, Ikegaya Y 1984 J. Theor. Biol. 109 249

    [6]

    Hayashi H, Ishzuka S 1992 J. Theor. Biol. 156 269

    [7]

    Li L, Gu H G, Yang M H, Liu Z Q, Ren W 2004 Int. J. Bifur. Chaos 14 1813

    [8]

    Wang D, Mo J, Zhao X Y, Gu H G, Qu S X, Ren W 2010 Chin. Phys. Lett. 27 070503

    [9]

    Gu H G, Zhu Z, Jia B 2011 Acta Phys. Sin. 60 100505 (in Chinese) [古华光, 朱洲, 贾冰 2011 物理学报 60 100505]

    [10]

    Yang M H, Liu Z Q, Li L, Xu Y L, Liu H J, Gu H G, Ren W 2009 Int. J. Bifur. Chaos 19 453

    [11]

    Ren W, Hu S J, Zhang B J, Xu J X, Gong Y F 1997 Int. J. Bifur. Chaos. 7 1867

    [12]

    Gu H G, Yang M H, Li L, Liu Z Q, Ren W 2004 Dynam. Contin. Dis. B 11 19

    [13]

    Zhao X Y, Song S L, Wei C L, Gu H G, Ren W 2010 Acta Biophys. Sin. 26 61 (in Chinese) [赵小燕, 宋绍丽, 魏春玲, 古华光, 任维 2010 生物物理学报 26 61]

    [14]

    Xie Y, Xu J X, Kang Y M, Hu S J, Duan Y B 2003 Acta Phys. Sin. 52 1112 (in Chinese) [谢勇, 徐健学, 康艳梅, 胡三觉, 段玉斌 2003 物理学报 52 1112]

    [15]

    Fan Y S, Holden A V 1993 Chaos Solitons Fract. 3 439

    [16]

    Chay T R 1985 Physica D 16 233

    [17]

    Wu S G, He D R 2000 Chin. Phys. Lett. 76 398

    [18]

    Wu S G, He D R 2001 Commun. Theor. Phys. 35 272

    [19]

    Schiff S J, Jerger K, Duong D H 1994 Nature 370 615

    [20]

    Thomas E, William J R, Zbigniew J K, James E S, Karl E G, Niels B 1994 Physiol. Rev. 74 1

    [21]

    Lovejoy L P, Shepard P D, Canavier C C 2001 Neuroscience 104 829

    [22]

    Kanno T, Miyano T, Tokudac I, Galvanovskisd J, Wakui M 2007 Physica D 226 107

    [23]

    Hu S J, Yang H J, Jian Z, Long K P, Duan Y B, Wan Y H, Xing J L, Xu H, Ju G 2000 Neuroscience 101 689

    [24]

    So P 1998 Biophys J. 74 2776

    [25]

    Jian Z, Xing J L, Yang G S, Hu S J 2004 Neurosignals 13 150

    [26]

    Wan Y H, Jian Z, Hu S J 2000 Neuroreport 11 3295

    [27]

    Longtin A, Bulsara A, Moss F 1991 Phys. Rev. Lett. 67 656

    [28]

    Braun H A, Wissing H, Schäfer K, Hirsch M C 1994 Nature 367 270

    [29]

    Xing J L, Hu S J, Xu H, Han S, Wan Y H 2001 Neuroreport 12 1311

    [30]

    Gu H G, Ren W, Lu Q S, Wu S G, Yang M H, Chen W J 2001 Phys. Lett. A 285 63

    [31]

    Gong P L, Xu J X, Hu S J, Long K P 2002 Int. J. Bifur. Chaos 12 319

    [32]

    Gu H G, Jia B, Lu Q S 2011 Cogn. Neurodyn. 5 87

    [33]

    Gu H G, Zhang H M, Wei C L, Yang M H, Liu Z Q, Ren W 2011 Int. J. Mod. Phys. B 25 3977

    [34]

    Jia B, Gu H G, Li Y Y 2011 Chin. Phys. Lett. 28 090507

    [35]

    Huber M T, Krige J C, Braun H A, Pei X, Neiman A, Moss F 2000 Neurocomputing 32---33 823

    [36]

    Gu H G, Yang M H, Li L, Liu Z Q, Ren W 2003 Phys. Lett. A 319 89

    [37]

    Gu H G, Yang M H, Li L, Liu Z Q, Ren W 2003 Int. J. Mod. Phys. B 17 4195

    [38]

    Mannella R, Palleschi V 1989 Phys. Rev. A 40 3381

    [39]

    Theiler J, Eubank S, Longtin A, Galdrinkian B 1992 Physica D 58 77

    [40]

    Sauer T 1994 Phys. Rev. Lett. 72 3811

  • [1] 丁学利, 李玉叶. 具有时滞的抑制性自突触诱发的神经放电的加周期分岔. 物理学报, 2016, 65(21): 210502. doi: 10.7498/aps.65.210502
    [2] 杨永霞, 李玉叶, 古华光. Pre-Bötzinger复合体的从簇到峰放电的同步转迁及分岔机制. 物理学报, 2020, 69(4): 040501. doi: 10.7498/aps.69.20191509
    [3] 季颖, 毕勤胜. 分段线性混沌电路的非光滑分岔分析. 物理学报, 2010, 59(11): 7612-7617. doi: 10.7498/aps.59.7612
    [4] 王敩青, 戴栋, 郝艳捧, 李立浧. 大气压氦气介质阻挡放电倍周期分岔及混沌现象的实验验证. 物理学报, 2012, 61(23): 230504. doi: 10.7498/aps.61.230504
    [5] 古华光, 朱洲, 贾冰. 一类新的混沌神经放电的动力学特征的实验和数学模型研究. 物理学报, 2011, 60(10): 100505. doi: 10.7498/aps.60.100505
    [6] 王永生, 孙 瑾, 王昌金, 范洪达. 变参数混沌时间序列的神经网络预测研究. 物理学报, 2008, 57(10): 6120-6131. doi: 10.7498/aps.57.6120
    [7] 王耀南, 谭 文. 混沌系统的遗传神经网络控制. 物理学报, 2003, 52(11): 2723-2728. doi: 10.7498/aps.52.2723
    [8] 陈增强, 袁著祉, 张 青, 王杰智. 共轭Chen混沌系统的分岔分析及基于该系统的超混沌生成研究. 物理学报, 2008, 57(4): 2092-2099. doi: 10.7498/aps.57.2092
    [9] 高仕龙, 钟苏川, 韦鹍, 马洪. 基于混沌和随机共振的微弱信号检测. 物理学报, 2012, 61(18): 180501. doi: 10.7498/aps.61.180501
    [10] 张立森, 蔡理, 冯朝文. 线性延时反馈Josephson结的Hopf分岔和混沌化. 物理学报, 2011, 60(6): 060306. doi: 10.7498/aps.60.060306
    [11] 李爽, 李倩, 李佼瑞. Duffing系统随机相位抑制混沌与随机共振并存现象的机理研究. 物理学报, 2015, 64(10): 100501. doi: 10.7498/aps.64.100501
    [12] 陈军, 李春光. 具有自适应反馈突触的神经元模型中的混沌:电路设计. 物理学报, 2011, 60(5): 050503. doi: 10.7498/aps.60.050503
    [13] 李鹤, 杨周, 张义民, 闻邦椿. 基于径向基神经网络预测的混沌时间序列嵌入维数估计方法. 物理学报, 2011, 60(7): 070512. doi: 10.7498/aps.60.070512
    [14] 李志军, 曾以成, 李志斌. 改进型细胞神经网络实现的忆阻器混沌电路. 物理学报, 2014, 63(1): 010502. doi: 10.7498/aps.63.010502
    [15] 修春波, 刘畅, 郭富慧, 成怡, 罗菁. 迟滞混沌神经元/网络的控制策略及应用研究. 物理学报, 2015, 64(6): 060504. doi: 10.7498/aps.64.060504
    [16] 王耀南, 谭 文. 不确定混沌系统的直接自适应模糊神经网络控制. 物理学报, 2004, 53(12): 4087-4091. doi: 10.7498/aps.53.4087
    [17] 孙克辉, 谈国强, 盛利元. TD-ERCS离散混沌伪随机序列的复杂性分析. 物理学报, 2008, 57(6): 3359-3366. doi: 10.7498/aps.57.3359
    [18] 罗松江, 丘水生, 骆开庆. 混沌伪随机序列的复杂度的稳定性研究. 物理学报, 2009, 58(9): 6045-6049. doi: 10.7498/aps.58.6045
    [19] 肖方红, 阎桂荣, 韩宇航. 混沌伪随机序列复杂度分析的符号动力学方法. 物理学报, 2004, 53(9): 2876-2881. doi: 10.7498/aps.53.2876
    [20] 李 明, 马西奎, 张 浩, 戴 栋. 基于符号序列描述的一类分段光滑系统中分岔现象与混沌分析. 物理学报, 2005, 54(3): 1084-1091. doi: 10.7498/aps.54.1084
  • 引用本文:
    Citation:
计量
  • 文章访问数:  2214
  • PDF下载量:  531
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-08-23
  • 修回日期:  2012-04-28
  • 刊出日期:  2012-04-20

一类位于加周期分岔中的貌似混沌的随机神经放电节律的识别

  • 1. 陕西师范大学物理学与信息技术学院, 西安 710062;
  • 2. 陕西师范大学生命科学学院, 西安 710062
  • 通信作者: , guhuaguang@263.net
    基金项目: 

    国家自然科学基金(批准号: 11072135, 10772101, 10432010, 30300107)和中央高等学校基本科研基金(批准号: GK200902025)资助的课题.

摘要: 识别非周期神经放电节律是混沌还是随机一直是一个重要的科学问题. 在神经起步点实验中发现了一类介于周期k和周期k+1(k=1,2)节律之间非周期自发放电节律, 其行为是长串的周期k簇和周期k+1簇的交替. 确定性理论模型Chay模型展示出了周期k和周期k+1节律的共存行为. 噪声在共存区诱发出了与实验结果类似的非周期节律, 说明该类节律是噪声引起的两类簇的跃迁. 非线性预报及其回归映射揭示该节律具有确定性机理; 将两类簇分别转换为0和1得到一个二进制序列, 对该序列进行概率分析获得了两类簇跃迁的随机机理. 这不仅说明该节律是具有确定性结构的随机节律而不是混沌, 还为深入识别现实神经系统的混沌和随机节律提供了典型示例和有效方法.

English Abstract

参考文献 (40)

目录

    /

    返回文章
    返回