搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镍锰铁氧体纳米线阵列的制备与表征

顾建军 韩金荣 成福伟 赵国良 刘力虎 孙会元

引用本文:
Citation:

镍锰铁氧体纳米线阵列的制备与表征

顾建军, 韩金荣, 成福伟, 赵国良, 刘力虎, 孙会元

Preparation and characterization of nickel manganese ferrite

Gu Jian-Jun, Han Jin-Rong, Cheng Fu-Wei, Zhao Guo-Liang, Liu Li-Hu, Sun Hui-Yuan
PDF
导出引用
  • 采用真空负压灌注技术, 结合溶胶-凝胶法在多孔氧化铝模板的纳米孔洞中成功制备了平均直径为80 nm左右的Ni1- xMnxFe2O4(x=0, 0.25, 0.5, 0.75) 纳米线阵列. XRD结果显示所制备的纳米线阵列为立方尖晶石结构, SEM和TEM的结果表明纳米线是由大量不同晶体取向的亚微晶粒联接组成. 磁测量结果显示, 随着Mn掺杂浓度的增加, 饱和磁化强度先增加而后减小, 这种变化与离子在尖晶石结构中的替代、占位变化有关. 相比于块体材料的NiFe2O4, 由于非线性磁结构比例的增加, 导致了线体NiFe2O4的饱和磁化强度降低.
    Arrays of Ni1-xMnxFe2O4 (x = 0.0, 0.25, 0.5, 0.75) nanowires with an average diameter of about 80 nm are prepared by porous anodic aluminum oxide membrane poured sol technique. X-ray diffraction analysis shows that the nickel manganese ferrites nanowires with cubic spinel structure are synthetized. Scanning electron microscopy and transmission electron microscope images indicate that the nanowire arrays are composed of prolate spheroids with different crystal orientations. Magnetic measurements show that saturation magnetization increases and then decreases with Mn increasing. The change is related to the location and the substitution of ion in spinel structure. Compared with of block material NiFe2O4, the saturation magnetization of nickel ferrite nanowire arrays is low. This is due to the fact that the noncollinear magnetic structure in nanowire arrays become predominant.
    • 基金项目: 河北省自然科学基金 (批准号: A2012101001, A2012205038), 河北省教育厅基金(批准号: Z2007422)和河北民族师范学院科研基金(批准号: 201114) 资助的课题.
    • Funds: Project supported by the Natural Science Foundation of Hebei Province, China (Grant Nos. A2012101001, A2012205038), the Fund of Hebei Province Department of Education, China (Grant No. Z2007422), and the Science Foundation of Hebei Normal University for Nationalities (Grant No. 201114).
    [1]

    Zhang Y, Kolmakov A, Chretien S, Metiu H, Moskovits M 2004 Nano Lett. 4 403

    [2]

    Yin S F, Xu B Q, Ng C F, Au C T 2004 Appl. Catal. 48 237

    [3]

    Zhong Z H, Qian F, Wang D L, Lieber C M 2003 Nano Lett. 3 343

    [4]

    Yu D L, Du Y W 2005 Acta Phys. Sin 54 0930 (in Chinese) [于冬亮, 都有为 2005 物理学报 54 0930]

    [5]

    Sugimoto M 1999 J.Am. Ceram. Soc. 82 269

    [6]

    Bate G 1991 J. Magn. Magn. Mater.100 413

    [7]

    Pileni M P 2001 Adv. Func. Mater. 113 23

    [8]

    Liu C, Zou B S, Rondinone A J, Zhang Z J 2000 J. Phys. Chem. B 104 1141

    [9]

    Shultz D, Calvin S, Fatouros P, Morrison S A, Carpenter E E 2007 J. Magn. Magn. Mater. 311 464D

    [10]

    Kinemuchi Y, Ishizaka K, Suematsu H, Jiang W, Yatsui K 2002 ThinSolid Films 407 109

    [11]

    Liu L H, Li H T, Fan S H, Gu J J, Li Y P, Sun H Y 2009 J. Magn. Magn. Mater 321 3511

    [12]

    Zhao R, Gu J J, Liu L H, Xu Q, Cai N, Sun H Y 2012 Acta Phys. Sin. 61 027504 (in Chinese) [赵荣, 顾建军, 刘力虎, 徐芹, 蔡宁, 孙会元 2012 物理学报 61 027504]

    [13]

    Zhou B, Zhang Y W, Liao C S, Yan C H 2002 J. Magn. Magn. Mater. 247 70

    [14]

    Gopalan E V, Al-Omari I A, Malini K A, Joy P A, Kumar D S, Yoshida Y, Anantharaman M R 2009 J. Magn. Magn. Mater. 321 1092

    [15]

    George M, John A M N, Joy P A, Anantharaman M R 2006 J. Magn. Magn. Mater. 302 190

  • [1]

    Zhang Y, Kolmakov A, Chretien S, Metiu H, Moskovits M 2004 Nano Lett. 4 403

    [2]

    Yin S F, Xu B Q, Ng C F, Au C T 2004 Appl. Catal. 48 237

    [3]

    Zhong Z H, Qian F, Wang D L, Lieber C M 2003 Nano Lett. 3 343

    [4]

    Yu D L, Du Y W 2005 Acta Phys. Sin 54 0930 (in Chinese) [于冬亮, 都有为 2005 物理学报 54 0930]

    [5]

    Sugimoto M 1999 J.Am. Ceram. Soc. 82 269

    [6]

    Bate G 1991 J. Magn. Magn. Mater.100 413

    [7]

    Pileni M P 2001 Adv. Func. Mater. 113 23

    [8]

    Liu C, Zou B S, Rondinone A J, Zhang Z J 2000 J. Phys. Chem. B 104 1141

    [9]

    Shultz D, Calvin S, Fatouros P, Morrison S A, Carpenter E E 2007 J. Magn. Magn. Mater. 311 464D

    [10]

    Kinemuchi Y, Ishizaka K, Suematsu H, Jiang W, Yatsui K 2002 ThinSolid Films 407 109

    [11]

    Liu L H, Li H T, Fan S H, Gu J J, Li Y P, Sun H Y 2009 J. Magn. Magn. Mater 321 3511

    [12]

    Zhao R, Gu J J, Liu L H, Xu Q, Cai N, Sun H Y 2012 Acta Phys. Sin. 61 027504 (in Chinese) [赵荣, 顾建军, 刘力虎, 徐芹, 蔡宁, 孙会元 2012 物理学报 61 027504]

    [13]

    Zhou B, Zhang Y W, Liao C S, Yan C H 2002 J. Magn. Magn. Mater. 247 70

    [14]

    Gopalan E V, Al-Omari I A, Malini K A, Joy P A, Kumar D S, Yoshida Y, Anantharaman M R 2009 J. Magn. Magn. Mater. 321 1092

    [15]

    George M, John A M N, Joy P A, Anantharaman M R 2006 J. Magn. Magn. Mater. 302 190

计量
  • 文章访问数:  3705
  • PDF下载量:  739
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-25
  • 修回日期:  2012-05-10
  • 刊出日期:  2012-05-05

镍锰铁氧体纳米线阵列的制备与表征

  • 1. 河北民族师范学院 物理系, 承德 067000;
  • 2. 河北师范大学 物理科学与信息工程学院, 石家庄 050016;
  • 3. 河北省新型薄膜材料重点实验室, 石家庄 050016
    基金项目: 

    河北省自然科学基金 (批准号: A2012101001, A2012205038), 河北省教育厅基金(批准号: Z2007422)和河北民族师范学院科研基金(批准号: 201114) 资助的课题.

摘要: 采用真空负压灌注技术, 结合溶胶-凝胶法在多孔氧化铝模板的纳米孔洞中成功制备了平均直径为80 nm左右的Ni1- xMnxFe2O4(x=0, 0.25, 0.5, 0.75) 纳米线阵列. XRD结果显示所制备的纳米线阵列为立方尖晶石结构, SEM和TEM的结果表明纳米线是由大量不同晶体取向的亚微晶粒联接组成. 磁测量结果显示, 随着Mn掺杂浓度的增加, 饱和磁化强度先增加而后减小, 这种变化与离子在尖晶石结构中的替代、占位变化有关. 相比于块体材料的NiFe2O4, 由于非线性磁结构比例的增加, 导致了线体NiFe2O4的饱和磁化强度降低.

English Abstract

参考文献 (15)

目录

    /

    返回文章
    返回