搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于广义窗函数和最小二乘支持向量机的混沌背景下微弱信号检测

行鸿彦 程艳燕 徐伟

基于广义窗函数和最小二乘支持向量机的混沌背景下微弱信号检测

行鸿彦, 程艳燕, 徐伟
PDF
导出引用
  • 为了从混沌背景中检测微弱信号,研究分析了复杂非线性系统的相空间重构理论,提出了一种基于广义窗函数的最小二乘支持向量机的预测法. 该方法以广义嵌入窗为基础,利用自关联函数法确定Lorenz系统的嵌入维数和时间延迟, 实现相空间重构,结合最小二乘支持向量机建立Lorenz系统的误差预测模型, 检测微弱目标信号(瞬态和周期信号).仿真实验表明,该方法的预测模型具有较小的误差, 能够有效地从混沌背景噪声中检测出微弱目标信号,减小噪声对目标信号的影响. 与传统方法相比,在降低检测门限的同时,能够有效地提高预测的精度, 在混沌噪声下信噪比为-87.41 dB的情况下,相对于传统支持向量机方法所得的均方根误差0.049(-54.60 dB时)降低近两个数量级至0.000036123(-87.41 dB时).
    • 基金项目: 国家自然科学基金(批准号: 61072133) 和江苏省"传感网与现代气象装备"优势学科平台资助的课题.
    [1]

    Dai S Q, Deng X J, Duan Z P 2001 Advances in Mechanics 31 323 (in Chinese) [戴世强, 邓学姜, 段祝平 2001 力学进展 31 323324]

    [2]

    Li X Q, Deng Z D 2009 ICBME 2008. Proceedings 23 390

    [3]

    Wang H P, Wang L M, Wan C L 2010 Ship Electronic Engineering 30 167 (in Chinese) [王红萍, 王黎明, 万程亮 2010 舰船电子工程 30 167]

    [4]

    Kao J W, Berber S M, Kecman V 2010 16th Asia-Pacific Conference on Communications (APCC) 215

    [5]

    Lampropoulos G A, Leung H 2000 IEEE International Radar Conference 404

    [6]

    Wang Y N, Liu L J, Zhou B W, Zhang H 2010 Chin. J. Sci. Instrum. 31 410 (in Chinese) [王耀南, 刘良江, 周博文, 张辉 2010 仪器仪表学报 31 410]

    [7]

    Takens F 1981 Lecture Notes in Mathematics 898 366

    [8]

    Zhang S Q, Jia J, Gao M, Han S 2010 Acta Phys. Sin. 59 1576 (in Chinese) [张淑清, 贾健, 高敏, 韩叙 2010 物理学报 59 1576]

    [9]

    Grassberger P, Procaccia I 1983 Phys. Rev. Lett. 50 346

    [10]

    Kim H S, Eykholt R, Sales J D 1999 Physica D 127 4850

    [11]

    Kugiumtzis D 1996 Physica D 95 1328

    [12]

    Harikrishnan K P, Misra R, Ambika G, Kembhavib A K 2006 Physica D: Nonlinear Phenomena 215 137

    [13]

    Lu Z B, Cai Z M, Jiang K Y 2007 J. Sys. Simul. 19 2528 (in Chinese) [陆振波, 蔡志明, 姜可宇 2007 系统仿真学报 19 2528]

    [14]

    Kenshi S, Yuko N, Shinichi A 2008 Chaos, Solitons and Fractacls 38 1274

    [15]

    Diogo C S, Ricardo S, Romis A 2011 Digital Signal Processing 21 417

    [16]

    Kurian A P, Leung H 2009 IEEE Trans. Cir. Sys.-I: Regular Papers 56 820

    [17]

    Cui W Z, Zhu C C, Bao W X, Liu J H 2004 Acta Phys. Sin. 53 3303 (in Chinese) [崔万照, 朱长纯, 保文星, 刘君华 2004 物理学报 53 3303]

    [18]

    Li Y, Xu K, Yang B J, Yuan Y, Wu Y 2008 Acta Phys. Sin. 57 3353 (in Chinese) [李月, 徐凯, 杨宝俊, 袁野, 吴宁 2008 物理学报 57 3353]

    [19]

    Xing H Y, Xu W 2007 Acta Phys. Sin. 56 3773 (in Chinese) [行鸿彦, 徐伟 2007 物理学报 56 3773]

    [20]

    Xing H Y, Jin T L 2010 Acta Phys. Sin. 59 143 (in Chinese) [行鸿彦, 金天力 2010 物理学报 59 143]

    [21]

    Xiao F H, Yan G R, Han Y H 2005 Acta Phys. Sin. 54 550 (in Chinese) [肖方红, 阎桂荣, 韩宇航 2005 物理学报 54 550]

    [22]

    Xiu C B, Liu X D, Zhang Y H 2003 Trans. Beijing Institute Technol. 23 219 (in Chinese) [修春波, 刘向东, 张宇河 2003 北京理工大学学报 23 219]

    [23]

    Xu J, Long K P, Rournier P D, Taha A K, Charge P 2010 Chin. Phys. Lett. 27 080506

    [24]

    Yang S Q, Jia C Y 2002 Acta Phys. Sin. 51 2454 (in Chinese) [杨绍清, 贾传荧 2002 物理学报 51 2454]

    [25]

    Wang M J, Zeng Y C, Chen G H, He J 2011 Acta Phys. Sin. 60 010509 (in Chinese) [王梦蛟, 曾以成, 陈光辉, 贺娟 2011 物理学报 60 010509]

  • [1]

    Dai S Q, Deng X J, Duan Z P 2001 Advances in Mechanics 31 323 (in Chinese) [戴世强, 邓学姜, 段祝平 2001 力学进展 31 323324]

    [2]

    Li X Q, Deng Z D 2009 ICBME 2008. Proceedings 23 390

    [3]

    Wang H P, Wang L M, Wan C L 2010 Ship Electronic Engineering 30 167 (in Chinese) [王红萍, 王黎明, 万程亮 2010 舰船电子工程 30 167]

    [4]

    Kao J W, Berber S M, Kecman V 2010 16th Asia-Pacific Conference on Communications (APCC) 215

    [5]

    Lampropoulos G A, Leung H 2000 IEEE International Radar Conference 404

    [6]

    Wang Y N, Liu L J, Zhou B W, Zhang H 2010 Chin. J. Sci. Instrum. 31 410 (in Chinese) [王耀南, 刘良江, 周博文, 张辉 2010 仪器仪表学报 31 410]

    [7]

    Takens F 1981 Lecture Notes in Mathematics 898 366

    [8]

    Zhang S Q, Jia J, Gao M, Han S 2010 Acta Phys. Sin. 59 1576 (in Chinese) [张淑清, 贾健, 高敏, 韩叙 2010 物理学报 59 1576]

    [9]

    Grassberger P, Procaccia I 1983 Phys. Rev. Lett. 50 346

    [10]

    Kim H S, Eykholt R, Sales J D 1999 Physica D 127 4850

    [11]

    Kugiumtzis D 1996 Physica D 95 1328

    [12]

    Harikrishnan K P, Misra R, Ambika G, Kembhavib A K 2006 Physica D: Nonlinear Phenomena 215 137

    [13]

    Lu Z B, Cai Z M, Jiang K Y 2007 J. Sys. Simul. 19 2528 (in Chinese) [陆振波, 蔡志明, 姜可宇 2007 系统仿真学报 19 2528]

    [14]

    Kenshi S, Yuko N, Shinichi A 2008 Chaos, Solitons and Fractacls 38 1274

    [15]

    Diogo C S, Ricardo S, Romis A 2011 Digital Signal Processing 21 417

    [16]

    Kurian A P, Leung H 2009 IEEE Trans. Cir. Sys.-I: Regular Papers 56 820

    [17]

    Cui W Z, Zhu C C, Bao W X, Liu J H 2004 Acta Phys. Sin. 53 3303 (in Chinese) [崔万照, 朱长纯, 保文星, 刘君华 2004 物理学报 53 3303]

    [18]

    Li Y, Xu K, Yang B J, Yuan Y, Wu Y 2008 Acta Phys. Sin. 57 3353 (in Chinese) [李月, 徐凯, 杨宝俊, 袁野, 吴宁 2008 物理学报 57 3353]

    [19]

    Xing H Y, Xu W 2007 Acta Phys. Sin. 56 3773 (in Chinese) [行鸿彦, 徐伟 2007 物理学报 56 3773]

    [20]

    Xing H Y, Jin T L 2010 Acta Phys. Sin. 59 143 (in Chinese) [行鸿彦, 金天力 2010 物理学报 59 143]

    [21]

    Xiao F H, Yan G R, Han Y H 2005 Acta Phys. Sin. 54 550 (in Chinese) [肖方红, 阎桂荣, 韩宇航 2005 物理学报 54 550]

    [22]

    Xiu C B, Liu X D, Zhang Y H 2003 Trans. Beijing Institute Technol. 23 219 (in Chinese) [修春波, 刘向东, 张宇河 2003 北京理工大学学报 23 219]

    [23]

    Xu J, Long K P, Rournier P D, Taha A K, Charge P 2010 Chin. Phys. Lett. 27 080506

    [24]

    Yang S Q, Jia C Y 2002 Acta Phys. Sin. 51 2454 (in Chinese) [杨绍清, 贾传荧 2002 物理学报 51 2454]

    [25]

    Wang M J, Zeng Y C, Chen G H, He J 2011 Acta Phys. Sin. 60 010509 (in Chinese) [王梦蛟, 曾以成, 陈光辉, 贺娟 2011 物理学报 60 010509]

  • [1] 田中大, 高宪文, 石彤. 用于混沌时间序列预测的组合核函数最小二乘支持向量机. 物理学报, 2014, 63(16): 160508. doi: 10.7498/aps.63.160508
    [2] 张春涛, 马千里, 彭宏, 姜友谊. 基于条件熵扩维的多变量混沌时间序列相空间重构. 物理学报, 2011, 60(2): 020508. doi: 10.7498/aps.60.020508
    [3] 唐舟进, 任峰, 彭涛, 王文博. 基于迭代误差补偿的混沌时间序列最小二乘支持向量机预测算法. 物理学报, 2014, 63(5): 050505. doi: 10.7498/aps.63.050505
    [4] 陈帝伊, 柳烨, 马孝义. 基于径向基函数神经网络的混沌时间序列相空间重构双参数联合估计. 物理学报, 2012, 61(10): 100501. doi: 10.7498/aps.61.100501
    [5] 刘 涵, 刘 丁, 任海鹏. 基于最小二乘支持向量机的混沌控制. 物理学报, 2005, 54(9): 4019-4025. doi: 10.7498/aps.54.4019
    [6] 李鹤, 杨周, 张义民, 闻邦椿. 基于径向基神经网络预测的混沌时间序列嵌入维数估计方法. 物理学报, 2011, 60(7): 070512. doi: 10.7498/aps.60.070512
    [7] 阎晓妹, 刘丁. 基于最小二乘支持向量机的分数阶混沌系统控制. 物理学报, 2010, 59(5): 3043-3048. doi: 10.7498/aps.59.3043
    [8] 行鸿彦, 金天力. 基于对偶约束最小二乘支持向量机的混沌海杂波背景中的微弱信号检测. 物理学报, 2010, 59(1): 140-146. doi: 10.7498/aps.59.140
    [9] 陈强, 任雪梅. 基于多核最小二乘支持向量机的永磁同步电机混沌建模及其实时在线预测. 物理学报, 2010, 59(4): 2310-2318. doi: 10.7498/aps.59.2310
    [10] 唐舟进, 彭涛, 王文博. 一种基于相关分析的局域最小二乘支持向量机小尺度网络流量预测算法. 物理学报, 2014, 63(13): 130504. doi: 10.7498/aps.63.130504
    [11] 丛 蕊, 刘树林, 马 锐. 基于数据融合的多变量相空间重构方法. 物理学报, 2008, 57(12): 7487-7493. doi: 10.7498/aps.57.7487
    [12] 游荣义, 陈 忠, 徐慎初, 吴伯僖. 基于小波变换的混沌信号相空间重构研究. 物理学报, 2004, 53(9): 2882-2888. doi: 10.7498/aps.53.2882
    [13] 肖方红, 阎桂荣, 韩宇航. 混沌时序相空间重构参数确定的信息论方法. 物理学报, 2005, 54(2): 550-556. doi: 10.7498/aps.54.550
    [14] 杨绍清, 贾传荧. 两种实用的相空间重构方法. 物理学报, 2002, 51(11): 2452-2458. doi: 10.7498/aps.51.2452
    [15] 张淑清, 李新新, 张立国, 胡永涛, 李亮. 基于符号分析的极大联合熵延迟时间求取方法. 物理学报, 2013, 62(11): 110506. doi: 10.7498/aps.62.110506
    [16] 吕善翔, 冯久超. 一种混沌映射的相空间去噪方法. 物理学报, 2013, 62(23): 230503. doi: 10.7498/aps.62.230503
    [17] 卢 山, 王海燕. 多变量时间序列最大李雅普诺夫指数的计算. 物理学报, 2006, 55(2): 572-576. doi: 10.7498/aps.55.572
    [18] 赵永平, 张丽艳, 李德才, 王立峰, 蒋洪章. 过滤窗最小二乘支持向量机的混沌时间序列预测. 物理学报, 2013, 62(12): 120511. doi: 10.7498/aps.62.120511
    [19] 叶美盈, 汪晓东, 张浩然. 基于在线最小二乘支持向量机回归的混沌时间序列预测. 物理学报, 2005, 54(6): 2568-2573. doi: 10.7498/aps.54.2568
    [20] 马庆禄, 刘卫宁, 孙棣华. 道路交通流状态的多参数融合预测方法. 物理学报, 2012, 61(16): 169501. doi: 10.7498/aps.61.169501
  • 引用本文:
    Citation:
计量
  • 文章访问数:  2399
  • PDF下载量:  966
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-06
  • 修回日期:  2012-05-28
  • 刊出日期:  2012-05-05

基于广义窗函数和最小二乘支持向量机的混沌背景下微弱信号检测

  • 1. 南京信息工程大学,江苏省气象探测与信息处理重点实验室, 南京 210044;
  • 2. 南京信息工程大学电子与信息工程学院, 南京 210044
    基金项目: 

    国家自然科学基金(批准号: 61072133) 和江苏省"传感网与现代气象装备"优势学科平台资助的课题.

摘要: 为了从混沌背景中检测微弱信号,研究分析了复杂非线性系统的相空间重构理论,提出了一种基于广义窗函数的最小二乘支持向量机的预测法. 该方法以广义嵌入窗为基础,利用自关联函数法确定Lorenz系统的嵌入维数和时间延迟, 实现相空间重构,结合最小二乘支持向量机建立Lorenz系统的误差预测模型, 检测微弱目标信号(瞬态和周期信号).仿真实验表明,该方法的预测模型具有较小的误差, 能够有效地从混沌背景噪声中检测出微弱目标信号,减小噪声对目标信号的影响. 与传统方法相比,在降低检测门限的同时,能够有效地提高预测的精度, 在混沌噪声下信噪比为-87.41 dB的情况下,相对于传统支持向量机方法所得的均方根误差0.049(-54.60 dB时)降低近两个数量级至0.000036123(-87.41 dB时).

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回