-
本文从拉曼峰强出发, 求得了反-2, 3-环氧丁烷分子的拉曼键极化率, 明确了拉曼激发下电荷的分布的信息. 还从旋光拉曼(Raman optical activity, ROA)谱的峰强, 求取了该分子的旋光拉曼键极化率. 由分子手性中心的C-H产生的偶极矩与拉曼激发过程中, 电荷流动产生的跃迁磁偶极矩的耦合, 来理解旋光拉曼活性产生的机理. 分析表明, 旋光拉曼活性分子手性中心的C-H键两侧的旋光拉曼极化率符号相反, 显示着手性分子局域的不对称性. 还得到了对称和反对称坐标的键极化率和旋光拉曼极化率, 并且从对称性的角度, 即C2群的不可约表示, 讨论了这些极化率的内涵.
[1] Barron L D, Buckingham A D 1971 Mol. Phys. 10 1111
[2] Barren L D, Bogaard M P, Buckingham A D 1973 J. Am. Chem. Soc. 95 603
[3] Polavarapu P L, Hecht L, Barron L D 1993 J. Phys. Chem. 97 1793
[4] Polavarapu P L 1997 Mol. Phys. 91 3551
[5] Wu G Z 2007 Raman Spectroscopy: A Intensity Approach (Beijing: Science Press) p70-84 (in Chinese) [吴国祯 2007 拉曼谱学-峰强中的信息 (北京: 科学出版社)第70—84页]
[6] Fang Y, Wu G Z, Wang P 2012 Chemical Physics 393 140
[7] Fang Y, Wu G Z, Wang P 2012 Spectrochimica Acta Part A 88 216
[8] Thomas M Black, Pranati K B 1990 J. Am. Chem. Soc. 112 1479
[9] Fang C, Wu G Z 2009 J. Raman Spectrosc. 40 308
[10] Fang C, Liu Z J, Wu G Z 2008 J. Mol. Struct. 885 168
[11] Fang C, Wu G Z 2007 J. Raman Spectrosc. 38 1416
[12] Shen H, Wu G Z, Wang P J, Chin. Phys. B (已接受)
-
[1] Barron L D, Buckingham A D 1971 Mol. Phys. 10 1111
[2] Barren L D, Bogaard M P, Buckingham A D 1973 J. Am. Chem. Soc. 95 603
[3] Polavarapu P L, Hecht L, Barron L D 1993 J. Phys. Chem. 97 1793
[4] Polavarapu P L 1997 Mol. Phys. 91 3551
[5] Wu G Z 2007 Raman Spectroscopy: A Intensity Approach (Beijing: Science Press) p70-84 (in Chinese) [吴国祯 2007 拉曼谱学-峰强中的信息 (北京: 科学出版社)第70—84页]
[6] Fang Y, Wu G Z, Wang P 2012 Chemical Physics 393 140
[7] Fang Y, Wu G Z, Wang P 2012 Spectrochimica Acta Part A 88 216
[8] Thomas M Black, Pranati K B 1990 J. Am. Chem. Soc. 112 1479
[9] Fang C, Wu G Z 2009 J. Raman Spectrosc. 40 308
[10] Fang C, Liu Z J, Wu G Z 2008 J. Mol. Struct. 885 168
[11] Fang C, Wu G Z 2007 J. Raman Spectrosc. 38 1416
[12] Shen H, Wu G Z, Wang P J, Chin. Phys. B (已接受)
引用本文: |
Citation: |
计量
- 文章访问数: 4139
- PDF下载量: 715
- 被引次数: 0