搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冷速对液态合金Ca50Zn50快速凝固过程中微观结构演变的影响

郑乃超 刘海蓉 刘让苏 梁永超 莫云飞 周群益 田泽安

引用本文:
Citation:

冷速对液态合金Ca50Zn50快速凝固过程中微观结构演变的影响

郑乃超, 刘海蓉, 刘让苏, 梁永超, 莫云飞, 周群益, 田泽安

Effects of cooling rates on microstructural evolution during solidification process of liquid Ca50Zn50 alloy

Zheng Nai-Chao, Liu Hai-Rong, Liu Rang-Su, Liang Yong-Chao, Mo Yun-Fei, Zhou Qun-Yi, Tian Ze-An
PDF
导出引用
  • 采用分子动力学方法对六种不同冷速对原子尺寸相差较大的液态合金Ca50Zn50凝固过程中微观结构演变的影响进行了模拟研究, 并采用双体分布函数﹑Honeycutt-Andersen (HA)键型指数法、原子团类型指数法(CTIM-2)﹑可视化等方法进行了深入分析, 结果表明: 系统存在一个临界冷速, 介于和5 1011 K/s与11011 K/s之间, 在临界冷速以上(如11014 K/s, 11013 K/s, 11012 K/s 和51011 K/s)时,系统形成以1551, 1541, 1431键型或二十面体基本原子团(12 0 12 0 0 0)等为主体的非晶态结构; 在临界冷速以下时, 系统形成以1441和1661键型或bcc基本原子团(14 6 0 8 0 0)为主体(含有少量的hcp(12 0 0 0 6 6)和fcc(12 0 0 0 12 0)基本原子团)的部分晶态结构. 在非晶形成的冷速范围内, 其总双体分布函数的第一峰明显分裂成与近邻分别为Zn-Zn, Ca-Zn, Ca-Ca相对应的三个次峰; 且随着冷速的下降, 同类原子近邻的次峰峰值升高、异类原子近邻的次峰峰值下降; Zn原子容易偏聚, 随着冷速降低, 二十面体的数量增多, 非晶态结构也越稳定. 在晶态形成的冷速范围内, Zn原子已大量偏聚形成大块bcc晶态结构, Ca原子也部分形成hcp和fcc晶态结构.
    A simulation study is performed on the effects of six different cooling rates on microstructural evolution during solidification process of liquid Ca50Zn50 alloy with larger atomic size difference by using the molecular dynamics method. The pair distribution function, Honeycutt-Andersen (HA) bond-type index method, cluster-type index method (CTIM-2) and three-dimensional visualization method are adopted to deeply analyze the microstructural evolution. The results show that there is a critical cooling rate (in a range of 11012 and 51011 K/s) for forming amorphous or crystal structure. When the cooling rate, such as 11014 K/s, 11013 K/s, 11012 K/s and 51011 K/s, is above the critical cooling rate, the amorphous structures are formed mainly to be the 1551, 1541 and 1431 bond-types or the icosahedron basic clustr (12 0 12 0 0 0); while the cooling rate is under the critical cooling rate, such as at 11012 K/s, the partial crystal structures are formed mainly to be the 1441 and 1661 bond-types or the bcc clusters (14 6 0 8 0 0) (containing part of hcp (12 0 0 0 6 6) and fcc (12 0 0 0 12 0) basic crystal clusters) in the system. In the cooling rate range of forming amorphous structure, the first peak of the pair distribution function g(r) is split obviously into three secondary peaks corresponding to the nearest neighbor as Zn-Zn, Ca-Zn and Ca-Ca, respectively, and with the decrease of cooling rate, the secondary peak formed by the like atoms is inereased and the secondary peak formed by unlike atoms is reduced. With the decrease of cooling rate, the Zn atoms can be easily segregated to form the larger clusters; the lower the cooling rate, the bigger the number of basic icosahedrons formed in the system, and the amorphous system is more stable. In the cooling rate range of forming crystal structure, a great number of Zn atoms are segregated to form the bulk bcc crystal structures and part of Ca atoms are segregated to form some hcp and fcc crystal clusters.
    • 基金项目: 国家自然科学基金(批准号: 50831003, 50571037, 51102090)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50831003, 50571037, 51102090).
    [1]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R 44 45

    [2]

    Texler M M, hadhani N N 2010 Prog. Mater. Sci. 55 759

    [3]

    Basu J, Ranganathan S 2003 Sadhana 28 783

    [4]

    Hirata A, Guan P f, FujitaT, Hirotsu Y, Inoue A, Yavari A R, Chen M W 2011 Nat. Mater. 10 28

    [5]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419

    [6]

    Cheng Y Q Ma E Sheng HW 2009 Phys. Rev. Lett. 102 245501

    [7]

    Liu C S, Xia J C, Zhu Z G, Sun D Y 2001 J. Chem. Phys. 114 7506

    [8]

    Tian Z A, Liu R S, Zheng C X, Liu H R, Hou Z Y, Peng P J 2008 Phys. Chem. A 112 12326

    [9]

    Hou Z Y, Liu R S, Li C S, Zhou Q Y, Zheng C X 2005 Acta Phys. Sin. 54 7523 (in Chinese) [侯兆阳, 刘让苏, 李琛珊, 周群益, 郑采星 2005 物理学报 54 7523]

    [10]

    LinY, Liu R S, Tian Z A, Hou Z Y, Zhou L L, Yu Y B 2008 Acta Phys.-Chim. Sin. 24 250 (in Chinese) [林 艳, 刘让苏, 田泽安, 侯兆阳, 周丽丽, 余亚斌 2008 物理化学学报 24 250]

    [11]

    Pei Q X, Lu C, Fu M W 2004 J. Phys.: Condens. Matter 16 4203

    [12]

    Wang L, Bian X F, Li H 2001 Mater. Lett. 51 7

    [13]

    Kazanc S 2006 Comput. Mater. Sci. 38 405

    [14]

    Hao S G, Kramer M J, Wang C Z, Ho K M, Nandi S, Kreyssig A, Goldman A I 2009 Phys. Rev. B 79 104206

    [15]

    Liu X J, Chen G L, Hui X, Lu Z P 2008 Appl. Phys. Lett. 93 011911

    [16]

    Wang S, Lai S K 1980 J. Phys. F: Met. Phys. 10 2717

    [17]

    Li D H, Li X R, Wang S 1986 J. Phys. F: Met. Phys. 16 309

    [18]

    Hafner J, Tegze M 1989 J. Phys.: Condens. Matter 1 8277

    [19]

    Hou Z Y, Liu L X, Liu R S, Tian Z A, Wang J G 2010 J. Appl. Phys. 107 083511

    [20]

    Dai X D, Li J H, Guo H B, Liu B X 2007 J. Appl. Phys. 101 063512

    [21]

    Honeycutt J D, Andemen H C 1987 J. Phys. Chem. 91 4950

    [22]

    Liu R S, Liu H R, Dong K J, Hou Z Y, Tian Z A, Peng P, Yu A B 2009 J. Non-Cryst. Solids. 355 541

    [23]

    Fang H Z, Hui X, Chen G L, Liu Z K 2008 Phys. Lett. A 372 5831

    [24]

    Gao T H, Liu R S, Zhou LL, Tian Z A, Xie Q 2009 Acta Phys. Chim. Sin. 25(10) 2093 (in Chinese) [高廷红, 刘让苏, 周丽丽, 田泽安, 谢泉 2009 物理化学学报 25(10) 2093]

    [25]

    Qi D W, Wang S 1991 Phys. Rev. B 44 884

    [26]

    Liu R S, Dong K J, Liu F X, Zheng C X, Liu H R, Li J Y 2004 Sci. China Ser. G 34 549 (in Chinese) [刘让苏, 董科军, 刘凤翔, 郑采星, 刘海蓉, 李基永 2004 中国科学G辑 34 549]

    [27]

    Liu R S, Dong K J, Tian Z A, Liu H R, Peng P, Yu A B 2007 J. Phys.: Condens. Matter. 19 196103

    [28]

    Liu H R, Liu R S, Zhang A L, Hou Z Y, Wang X, Tian Z A 2007 Chin. Phys. 16 3743

    [29]

    Peng P, Li G F, Zheng C X, Han S C, Liu R S 2006 Sci. China Ser. E 36 975 (in Chinese) [彭平, 李贵发, 郑采星, 韩绍昌, 刘让苏 2006 中国科学E辑 36 975]

    [30]

    Zheng C X, Liu R S, Dong K J, Lu X Y, Peng P, Liu H R, Xu Z Y, Xie Q 2002 J. Atom. Mol. Phys. 19 59 (in Chinese) [郑采星, 刘让苏, 董科军, 卢小勇, 彭平, 刘海蓉, 徐仲榆, 谢泉 2002 原子与分子物理学报 19 59]

    [31]

    Peng H L, Li M Z, Wang W H 2011 Phys. Rev. Lett. 106 135503

    [32]

    Liu Z Y 1984 Acta Metall. Sin. 20(1) B9 (in Chinese) [刘志毅 1984 金属学报 20(1) B9]

  • [1]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R 44 45

    [2]

    Texler M M, hadhani N N 2010 Prog. Mater. Sci. 55 759

    [3]

    Basu J, Ranganathan S 2003 Sadhana 28 783

    [4]

    Hirata A, Guan P f, FujitaT, Hirotsu Y, Inoue A, Yavari A R, Chen M W 2011 Nat. Mater. 10 28

    [5]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419

    [6]

    Cheng Y Q Ma E Sheng HW 2009 Phys. Rev. Lett. 102 245501

    [7]

    Liu C S, Xia J C, Zhu Z G, Sun D Y 2001 J. Chem. Phys. 114 7506

    [8]

    Tian Z A, Liu R S, Zheng C X, Liu H R, Hou Z Y, Peng P J 2008 Phys. Chem. A 112 12326

    [9]

    Hou Z Y, Liu R S, Li C S, Zhou Q Y, Zheng C X 2005 Acta Phys. Sin. 54 7523 (in Chinese) [侯兆阳, 刘让苏, 李琛珊, 周群益, 郑采星 2005 物理学报 54 7523]

    [10]

    LinY, Liu R S, Tian Z A, Hou Z Y, Zhou L L, Yu Y B 2008 Acta Phys.-Chim. Sin. 24 250 (in Chinese) [林 艳, 刘让苏, 田泽安, 侯兆阳, 周丽丽, 余亚斌 2008 物理化学学报 24 250]

    [11]

    Pei Q X, Lu C, Fu M W 2004 J. Phys.: Condens. Matter 16 4203

    [12]

    Wang L, Bian X F, Li H 2001 Mater. Lett. 51 7

    [13]

    Kazanc S 2006 Comput. Mater. Sci. 38 405

    [14]

    Hao S G, Kramer M J, Wang C Z, Ho K M, Nandi S, Kreyssig A, Goldman A I 2009 Phys. Rev. B 79 104206

    [15]

    Liu X J, Chen G L, Hui X, Lu Z P 2008 Appl. Phys. Lett. 93 011911

    [16]

    Wang S, Lai S K 1980 J. Phys. F: Met. Phys. 10 2717

    [17]

    Li D H, Li X R, Wang S 1986 J. Phys. F: Met. Phys. 16 309

    [18]

    Hafner J, Tegze M 1989 J. Phys.: Condens. Matter 1 8277

    [19]

    Hou Z Y, Liu L X, Liu R S, Tian Z A, Wang J G 2010 J. Appl. Phys. 107 083511

    [20]

    Dai X D, Li J H, Guo H B, Liu B X 2007 J. Appl. Phys. 101 063512

    [21]

    Honeycutt J D, Andemen H C 1987 J. Phys. Chem. 91 4950

    [22]

    Liu R S, Liu H R, Dong K J, Hou Z Y, Tian Z A, Peng P, Yu A B 2009 J. Non-Cryst. Solids. 355 541

    [23]

    Fang H Z, Hui X, Chen G L, Liu Z K 2008 Phys. Lett. A 372 5831

    [24]

    Gao T H, Liu R S, Zhou LL, Tian Z A, Xie Q 2009 Acta Phys. Chim. Sin. 25(10) 2093 (in Chinese) [高廷红, 刘让苏, 周丽丽, 田泽安, 谢泉 2009 物理化学学报 25(10) 2093]

    [25]

    Qi D W, Wang S 1991 Phys. Rev. B 44 884

    [26]

    Liu R S, Dong K J, Liu F X, Zheng C X, Liu H R, Li J Y 2004 Sci. China Ser. G 34 549 (in Chinese) [刘让苏, 董科军, 刘凤翔, 郑采星, 刘海蓉, 李基永 2004 中国科学G辑 34 549]

    [27]

    Liu R S, Dong K J, Tian Z A, Liu H R, Peng P, Yu A B 2007 J. Phys.: Condens. Matter. 19 196103

    [28]

    Liu H R, Liu R S, Zhang A L, Hou Z Y, Wang X, Tian Z A 2007 Chin. Phys. 16 3743

    [29]

    Peng P, Li G F, Zheng C X, Han S C, Liu R S 2006 Sci. China Ser. E 36 975 (in Chinese) [彭平, 李贵发, 郑采星, 韩绍昌, 刘让苏 2006 中国科学E辑 36 975]

    [30]

    Zheng C X, Liu R S, Dong K J, Lu X Y, Peng P, Liu H R, Xu Z Y, Xie Q 2002 J. Atom. Mol. Phys. 19 59 (in Chinese) [郑采星, 刘让苏, 董科军, 卢小勇, 彭平, 刘海蓉, 徐仲榆, 谢泉 2002 原子与分子物理学报 19 59]

    [31]

    Peng H L, Li M Z, Wang W H 2011 Phys. Rev. Lett. 106 135503

    [32]

    Liu Z Y 1984 Acta Metall. Sin. 20(1) B9 (in Chinese) [刘志毅 1984 金属学报 20(1) B9]

  • [1] 孟绍怡, 郝奇, 王兵, 段亚娟, 乔吉超. 冷却速率对La基非晶合金β弛豫行为和应力弛豫的影响. 物理学报, 2024, 73(3): 036101. doi: 10.7498/aps.73.20231417
    [2] 安敏荣, 李思澜, 宿梦嘉, 邓琼, 宋海洋. 尺寸依赖的CoCrFeNiMn晶体/非晶双相高熵合金塑性变形机制的分子动力学模拟. 物理学报, 2022, 71(24): 243101. doi: 10.7498/aps.71.20221368
    [3] 李昌, 侯兆阳, 牛媛, 高全华, 王真, 王晋国, 邹鹏飞. Ti3Al合金凝固过程晶核形成及演变过程的模拟研究. 物理学报, 2022, 71(1): 016101. doi: 10.7498/aps.71.20211415
    [4] 周边, 杨亮. 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响. 物理学报, 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [5] 高鹏飞, 刘铁, 柴少伟, 董蒙, 王强. 磁感应强度和冷却速率对Tb0.27Dy0.73Fe1.95合金凝固过程中取向行为的影响. 物理学报, 2016, 65(3): 038104. doi: 10.7498/aps.65.038104
    [6] 齐玉, 曲昌荣, 王丽, 方腾. Fe50Cu50合金熔体相分离过程的分子动力学模拟. 物理学报, 2014, 63(4): 046401. doi: 10.7498/aps.63.46401
    [7] 边文花, 代富平, 王伟丽, 赵宇龙. 急冷条件下NiAl-Mo三元共晶合金的组织形成机制. 物理学报, 2013, 62(4): 048102. doi: 10.7498/aps.62.048102
    [8] 颜笑, 辛子华, 张娇娇. 碳硅二炔结构及性质分子动力学模拟研究. 物理学报, 2013, 62(23): 238101. doi: 10.7498/aps.62.238101
    [9] 邓阳, 刘让苏, 周群益, 刘海蓉, 梁永超, 莫云飞, 张海涛, 田泽安, 彭平. 熔体初始温度对液态金属Ni凝固过程中微观结构演变影响的模拟研究. 物理学报, 2013, 62(16): 166101. doi: 10.7498/aps.62.166101
    [10] 郑小青, 杨洋, 孙得彦. 模型二元有序合金固液界面结构的分子动力学研究. 物理学报, 2013, 62(1): 017101. doi: 10.7498/aps.62.017101
    [11] 夏冬, 王新强. 超细Pt纳米线结构和熔化行为的分子动力学模拟研究. 物理学报, 2012, 61(13): 130510. doi: 10.7498/aps.61.130510
    [12] 徐春龙, 侯兆阳, 刘让苏. Ca70Mg30金属玻璃形成过程热力学、 动力学和结构特性转变机理的模拟研究. 物理学报, 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [13] 梁永超, 刘让苏, 朱轩民, 周丽丽, 田泽安, 刘全慧. 液态Mg7Zn3合金快速凝固过程中微观结构演变机理的模拟研究. 物理学报, 2010, 59(11): 7930-7940. doi: 10.7498/aps.59.7930
    [14] 侯兆阳, 刘丽霞, 刘让苏, 田泽安. Al-Mg合金熔体快速凝固过程中微观结构演化机理的模拟研究. 物理学报, 2009, 58(7): 4817-4825. doi: 10.7498/aps.58.4817
    [15] 周丽丽, 刘让苏, 侯兆阳, 田泽安, 林 艳, 刘全慧. 冷速对液态金属Pb凝固过程中微观团簇结构演变影响的模拟研究. 物理学报, 2008, 57(6): 3653-3660. doi: 10.7498/aps.57.3653
    [16] 侯兆阳, 刘让苏, 王 鑫, 田泽安, 周群益, 陈振华. 熔体初始温度对液态金属Na凝固过程中微观结构影响的模拟研究. 物理学报, 2007, 56(1): 376-383. doi: 10.7498/aps.56.376
    [17] 杨 弘, 陈 民. 深过冷液态Ni2TiAl合金热物理性质的分子动力学模拟. 物理学报, 2006, 55(5): 2418-2421. doi: 10.7498/aps.55.2418
    [18] 易学华, 刘让苏, 田泽安, 侯兆阳, 王 鑫, 周群益. 冷却速率对液态金属Cu凝固过程中微观结构演变影响的模拟研究. 物理学报, 2006, 55(10): 5386-5393. doi: 10.7498/aps.55.5386
    [19] 侯兆阳, 刘让苏, 李琛珊, 周群益, 郑采星. 冷速对液态金属Na凝固过程中微观结构影响的模拟研究. 物理学报, 2005, 54(12): 5723-5729. doi: 10.7498/aps.54.5723
    [20] 王昶清, 贾 瑜, 马丙现, 王松有, 秦 臻, 王 飞, 武乐可, 李新建. 不同温度下Si(001)表面各种亚稳态结构的分子动力学模拟. 物理学报, 2005, 54(9): 4313-4318. doi: 10.7498/aps.54.4313
计量
  • 文章访问数:  5714
  • PDF下载量:  465
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-06
  • 修回日期:  2012-08-15
  • 刊出日期:  2012-12-05

/

返回文章
返回