搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用于精密振荡器的石英晶体温度特性研究

朱华兵 吴正斌 刘国强 席奎 李闪闪 董洋洋

引用本文:
Citation:

应用于精密振荡器的石英晶体温度特性研究

朱华兵, 吴正斌, 刘国强, 席奎, 李闪闪, 董洋洋

Study of quartz temperature characteristics for precise oscillator applications

Zhu Hua-Bing, Wu Zheng-Bin, Liu Guo-Qiang, Xi Kui, Li Shan-Shan, Dong Yang-Yang
PDF
导出引用
  • 采用一种新型压电材料精确表征方法研究了不同环境温度条件下应用于振荡器的石英材料特性变化.测量了从室温至100 ℃ 不同稳定环境温度下AT切向石英晶体材料的电子阻抗共振特性,并采用基于模拟退火优化算法的压电材料精确表征方法对电子阻抗共振特性进行了准确的拟合, 计算出了AT切向石英晶体材料在不同温度下包含损耗特性的复数形式材料参数. 通过研究和分析温度变化对石英晶体材料参数及其损耗特性的影响, 为具有稳定温度特性的精密振荡器设计提供了理论和技术支持.
    In this paper, we report on the study of quartz material characteristic variation with temperature for precision oscillator applications with a novel piezoelectric material precise characterization method. Electrical impedance resonant characteristics of AT cut quartz sample are measured at temperatures ranging from ambient temperature up to 100 ℃. These measured results are fitted with a simulated annealing optimization algorithm to accurately calculate complex material parameters comprising loss characteristics. Effects of temperature change on quartz material characteristics and their loss are analyzed. This paper offers theoretical and technical supports to the design of precision oscillators with stable temperature characteristics.
    • 基金项目: 国家自然科学基金(批准号: 10804075)和广东省中国科学院全面战略合作项目(批准号: 2010B090300004)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10804075), and the Comprehensive Strategic Cooperation Project of Guangdong Province and China Academy of Sciences (Grant No. 2010B090300004).
    [1]

    Lam C S 2008 Proceedings of IEEE International Ultrasonics Symposium Beijing, China, August 2-5, 2008 p694

    [2]

    Lim J, Kim H, Jackson T N, Choi K, Kenny D 2010 IEEE Trans Ultrason. Ferroelectr Freq. Control 57 1906

    [3]

    Martin G, Wall B 2006 Proceedings of IEEE International Ultrasonics Symposium Vancouver, Canada, October 3-6, 2006 p825

    [4]

    Petie D, Cesar E, Bar P, Joblot S, Parat G, Berchaud O, Barbier D, CarpentierI J F 2008 Proceedings of IEEE International Ultrasonics Symposium Beijing, China, August 2-5, 2008 p895

    [5]

    IEEE Standard 176-1987

    [6]

    Sherrit S, Wiederick H D, Mukherjee B K 1992 Ferroelectrics 134 111

    [7]

    Smiths J G 1976 IEEE Trans. Sonics. Ultrasonics 23 393

    [8]

    Kwok K W Chan H L W Choy C L 1997 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 44 733

    [9]

    Dong Y, Wu Z, Hu H, Wu B, Xu G 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 57 2613

    [10]

    Vig J 1992 Introduction to Quartz Frequency Standards Fort Monmouth, USA, October 1992

    [11]

    Beaver W D, Lau C K, Sun X M, Xu S K 2002 Proceedings of IEEE International Frequency Control Symposium and PDA Exhibition New Orleans, USA, May 29-31, 2002 p361

    [12]

    Wu Z, Cochran S, Hurrell A 2008 Electron. Lett. 44 940

    [13]

    Ward R W 1992 Proceedings of 14th Piezoelectric Devices Conference and Exhibition Salt Lake City, USA, September 15-17 1992

  • [1]

    Lam C S 2008 Proceedings of IEEE International Ultrasonics Symposium Beijing, China, August 2-5, 2008 p694

    [2]

    Lim J, Kim H, Jackson T N, Choi K, Kenny D 2010 IEEE Trans Ultrason. Ferroelectr Freq. Control 57 1906

    [3]

    Martin G, Wall B 2006 Proceedings of IEEE International Ultrasonics Symposium Vancouver, Canada, October 3-6, 2006 p825

    [4]

    Petie D, Cesar E, Bar P, Joblot S, Parat G, Berchaud O, Barbier D, CarpentierI J F 2008 Proceedings of IEEE International Ultrasonics Symposium Beijing, China, August 2-5, 2008 p895

    [5]

    IEEE Standard 176-1987

    [6]

    Sherrit S, Wiederick H D, Mukherjee B K 1992 Ferroelectrics 134 111

    [7]

    Smiths J G 1976 IEEE Trans. Sonics. Ultrasonics 23 393

    [8]

    Kwok K W Chan H L W Choy C L 1997 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 44 733

    [9]

    Dong Y, Wu Z, Hu H, Wu B, Xu G 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 57 2613

    [10]

    Vig J 1992 Introduction to Quartz Frequency Standards Fort Monmouth, USA, October 1992

    [11]

    Beaver W D, Lau C K, Sun X M, Xu S K 2002 Proceedings of IEEE International Frequency Control Symposium and PDA Exhibition New Orleans, USA, May 29-31, 2002 p361

    [12]

    Wu Z, Cochran S, Hurrell A 2008 Electron. Lett. 44 940

    [13]

    Ward R W 1992 Proceedings of 14th Piezoelectric Devices Conference and Exhibition Salt Lake City, USA, September 15-17 1992

计量
  • 文章访问数:  2466
  • PDF下载量:  729
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-11
  • 修回日期:  2012-08-02
  • 刊出日期:  2013-01-05

应用于精密振荡器的石英晶体温度特性研究

  • 1. 海军工程大学海军兵器新技术应用研究所, 武汉 430033;
  • 2. 中国科学院深圳先进技术研究院,深圳 518055;
  • 3. 广东惠伦晶体科技股份有限公司,东莞 523757
    基金项目: 

    国家自然科学基金(批准号: 10804075)和广东省中国科学院全面战略合作项目(批准号: 2010B090300004)资助的课题.

摘要: 采用一种新型压电材料精确表征方法研究了不同环境温度条件下应用于振荡器的石英材料特性变化.测量了从室温至100 ℃ 不同稳定环境温度下AT切向石英晶体材料的电子阻抗共振特性,并采用基于模拟退火优化算法的压电材料精确表征方法对电子阻抗共振特性进行了准确的拟合, 计算出了AT切向石英晶体材料在不同温度下包含损耗特性的复数形式材料参数. 通过研究和分析温度变化对石英晶体材料参数及其损耗特性的影响, 为具有稳定温度特性的精密振荡器设计提供了理论和技术支持.

English Abstract

参考文献 (13)

目录

    /

    返回文章
    返回