搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维周期与准周期排列沟槽结构的流体减阻特性研究

王晓娜 耿兴国 臧渡洋

一维周期与准周期排列沟槽结构的流体减阻特性研究

王晓娜, 耿兴国, 臧渡洋
PDF
导出引用
  • 本文设计了具有相同平均沟槽密度的三种排列类型的一维沟槽结构: 密排列、周期间隔排列和两种准周期间隔排列, 并采用数值模拟和实验验证相结合的方法研究了一维沟槽结构在不同排列下的流体减阻特性. 模拟计算分析流场特征和总阻力, 发现相对于密排列和周期间隔排列的沟槽结构, 准周期间隔排列具有更好的减阻特性, 并且这一结果得到减阻实验的验证. 通过流场分布特性进一步分析沟槽结构的减阻机理. 机理分析发现高速流在经一维准周期结构的扰动波调制后形成了准周期间隔排列的速度条纹相, 这有效地抑制了大涡在流向和展向上的形成, 从而实现较大幅度的减阻. 同时对比分析沟槽排列结构调制展向涡和流向涡各自对流动减阻的贡献, 结果表明, 调制流向涡对减阻的作用更大.
    • 基金项目: 国家自然科学基金(批准号:10872172)、陕西省自然科学基金(批准号: 2012JQ1016)、西北工业大学基础研究基金 (批准号: JC20100242, JCY20130147)和研究生种子基金(批准号:2012234)资助的课题.
    [1]

    Philips A B, Turnock S R, Furlong M 2010 Journal of Engineering for the Maritime Environment 224 239

    [2]

    Viswanath P R 2002 Progress in Aerospace Sciences 38 571

    [3]

    Ke G X, Pan G, Huang Q G, Hu H B, Liu Z Y 2009 Advances in Mechanics 39 5 (in Chinese) [柯贵喜, 潘光, 黄桥高, 胡海豹, 刘占一 2009 力学进展 39 5]

    [4]

    Iaccarino G, Shaqfeh E S G, Dubief Y 2010 J. Non-Newtonian Fluid Mech 165 376

    [5]

    Elyukhina I, Khomyakov A 2011 J. Phys.: Conf. Ser 318 092013

    [6]

    McHale G, Newton M I, Shirtcliffe N J 2010 Soft Matter 6 714

    [7]

    Wang X L, Di Q F, Zhang R L, Ding W P, Gong W, Chen Y C 2012 Acta Phys. Sin. 61 216801 (in Chinese) [王新亮, 狄勤丰, 张任良, 丁伟朋, 龚玮, 程毅翀 2012 物理学报 61 216801]

    [8]

    Jung Y C, Bhushan B 2010 J. Phys.: Condens. Matter 22 035104

    [9]

    Bhushan B, Jung Y C 2011 Progress in Materials Science 56 1

    [10]

    Malaspina D C, Schulz E P, Alarcón L M, Frechero M A, Appignanesi G A 2010 The European Physical Journal E 32 35

    [11]

    Ceccio S L 2010 Annual Review of Fluid Mechanics 42 183

    [12]

    Choi J, Jeon W P, Choi H 2006 Phys. of Fluids 18 041702

    [13]

    Walsh M J 1982 AIAA 82 0169

    [14]

    Lee S J, Lim H C, Han M, Lee S S 2005 Fluid Dynamics Research 37 246

    [15]

    Zhang C C, Wang J, Shang Y G 2010 Science China Technological Sciences 53 2954

    [16]

    Park S R, Wallace J M 1994 AIAA J. 32 31

    [17]

    Choi K S 1989 J. Fluid Mech. 208 417

    [18]

    Minetti A E, Machtsiras G, Masters J C 2009 Journal of Biomechanics 42 2188-2190

    [19]

    Sun M, Tian J, Li Z Y, Cheng B Y, Zhang D Z, Jin A Z, Yang H F 2006 Chin. Phys. Lett. 23 486

    [20]

    Zhou P Q, Dong C H, Cao Y J 2006 Acta Phys. Sin. 55 6470 (in Chinese) [周培勤, 董纯红, 曹永军 2006 物理学报 55 6470]

    [21]

    Shechtman D, Blech I A, Gratias D, Chan J W 1984 Phys. Rev. Lett. 53 1951

    [22]

    Zhang M, Geng X G, Zhang Y, Wang X N 2012 Acta Phys. Sin. 61 194702 (in Chinese) [张盟, 耿兴国, 张瑶, 王晓娜 2006 物理学报 61 194702]

    [23]

    Gao P, Geng X G, Ou X L, Xue W H 2009 Acta Phys. Sin. 58 421 (in Chinese) [高鹏, 耿兴国, 欧修龙, 薛文辉 2009 物理学报 58 421]

    [24]

    Guo K X 2004 Quasiperiodic Crystals (Hangzhou: Zhejiang Science and Technology Press) 12 p 70 (in Chinese) [郭可信 2004 准晶研究 (杭州: 浙江科学技术出版社) 12 p70]

    [25]

    Choi K S 2006 Nature 440 754

    [26]

    Fransson J H M, Talamelli A, Brandt L, Cossu C 2006 Phys. Rev. Lett. 96 064501

    [27]

    Bacher E V, Smith C R 1985 AIAA Paper 85 0548

    [28]

    Xue W H, Geng X G, Li F, Li J, Wu J 2010 Chin. Phys. Lett. 27 104703

  • [1]

    Philips A B, Turnock S R, Furlong M 2010 Journal of Engineering for the Maritime Environment 224 239

    [2]

    Viswanath P R 2002 Progress in Aerospace Sciences 38 571

    [3]

    Ke G X, Pan G, Huang Q G, Hu H B, Liu Z Y 2009 Advances in Mechanics 39 5 (in Chinese) [柯贵喜, 潘光, 黄桥高, 胡海豹, 刘占一 2009 力学进展 39 5]

    [4]

    Iaccarino G, Shaqfeh E S G, Dubief Y 2010 J. Non-Newtonian Fluid Mech 165 376

    [5]

    Elyukhina I, Khomyakov A 2011 J. Phys.: Conf. Ser 318 092013

    [6]

    McHale G, Newton M I, Shirtcliffe N J 2010 Soft Matter 6 714

    [7]

    Wang X L, Di Q F, Zhang R L, Ding W P, Gong W, Chen Y C 2012 Acta Phys. Sin. 61 216801 (in Chinese) [王新亮, 狄勤丰, 张任良, 丁伟朋, 龚玮, 程毅翀 2012 物理学报 61 216801]

    [8]

    Jung Y C, Bhushan B 2010 J. Phys.: Condens. Matter 22 035104

    [9]

    Bhushan B, Jung Y C 2011 Progress in Materials Science 56 1

    [10]

    Malaspina D C, Schulz E P, Alarcón L M, Frechero M A, Appignanesi G A 2010 The European Physical Journal E 32 35

    [11]

    Ceccio S L 2010 Annual Review of Fluid Mechanics 42 183

    [12]

    Choi J, Jeon W P, Choi H 2006 Phys. of Fluids 18 041702

    [13]

    Walsh M J 1982 AIAA 82 0169

    [14]

    Lee S J, Lim H C, Han M, Lee S S 2005 Fluid Dynamics Research 37 246

    [15]

    Zhang C C, Wang J, Shang Y G 2010 Science China Technological Sciences 53 2954

    [16]

    Park S R, Wallace J M 1994 AIAA J. 32 31

    [17]

    Choi K S 1989 J. Fluid Mech. 208 417

    [18]

    Minetti A E, Machtsiras G, Masters J C 2009 Journal of Biomechanics 42 2188-2190

    [19]

    Sun M, Tian J, Li Z Y, Cheng B Y, Zhang D Z, Jin A Z, Yang H F 2006 Chin. Phys. Lett. 23 486

    [20]

    Zhou P Q, Dong C H, Cao Y J 2006 Acta Phys. Sin. 55 6470 (in Chinese) [周培勤, 董纯红, 曹永军 2006 物理学报 55 6470]

    [21]

    Shechtman D, Blech I A, Gratias D, Chan J W 1984 Phys. Rev. Lett. 53 1951

    [22]

    Zhang M, Geng X G, Zhang Y, Wang X N 2012 Acta Phys. Sin. 61 194702 (in Chinese) [张盟, 耿兴国, 张瑶, 王晓娜 2006 物理学报 61 194702]

    [23]

    Gao P, Geng X G, Ou X L, Xue W H 2009 Acta Phys. Sin. 58 421 (in Chinese) [高鹏, 耿兴国, 欧修龙, 薛文辉 2009 物理学报 58 421]

    [24]

    Guo K X 2004 Quasiperiodic Crystals (Hangzhou: Zhejiang Science and Technology Press) 12 p 70 (in Chinese) [郭可信 2004 准晶研究 (杭州: 浙江科学技术出版社) 12 p70]

    [25]

    Choi K S 2006 Nature 440 754

    [26]

    Fransson J H M, Talamelli A, Brandt L, Cossu C 2006 Phys. Rev. Lett. 96 064501

    [27]

    Bacher E V, Smith C R 1985 AIAA Paper 85 0548

    [28]

    Xue W H, Geng X G, Li F, Li J, Wu J 2010 Chin. Phys. Lett. 27 104703

  • [1] 郎莎莎, 耿兴国, 臧渡洋. 八重准周期排列的短沟槽结构减阻机理分析. 物理学报, 2014, 63(8): 084704. doi: 10.7498/aps.63.084704
    [2] 张盟, 耿兴国, 张瑶, 王晓娜. 一维短沟槽复合准晶结构减阻效应及模拟分析. 物理学报, 2012, 61(19): 194702. doi: 10.7498/aps.61.194702
    [3] 邹俊辉, 张娟. 混合准周期异质结构的带隙补偿与展宽. 物理学报, 2016, 65(1): 014214. doi: 10.7498/aps.65.014214
    [4] 张振俊, 李文娟, 朱璇, 熊烨, 童培庆. 横场中非束缚类准周期伊辛链的赝临界点. 物理学报, 2015, 64(19): 190501. doi: 10.7498/aps.64.190501
    [5] 高新全, 丑纪范, 何文平, 封国林. 准周期外力驱动下Lorenz系统的动力学行为. 物理学报, 2006, 55(6): 3175-3179. doi: 10.7498/aps.55.3175
    [6] 杨立峰, 王亚非, 周鹰. 一维压电Fibonacci类准周期声子晶体传输特性. 物理学报, 2012, 61(10): 107702. doi: 10.7498/aps.61.107702
    [7] 陈阿丽, 梁同利, 汪越胜. 二维8重固-流型准周期声子晶体带隙特性研究. 物理学报, 2014, 63(3): 036101. doi: 10.7498/aps.63.036101
    [8] 窦军红, 盛艳, 张道中. 准晶非线性光子晶体中二次谐波波长和温度调谐的研究. 物理学报, 2009, 58(7): 4685-4688. doi: 10.7498/aps.58.4685
    [9] 刘越, 张巍, 冯雪, 刘小明. 损耗调制型掺铒光纤环形激光器混沌现象的实验研究. 物理学报, 2009, 58(5): 2971-2976. doi: 10.7498/aps.58.2971
    [10] 高鹏, 耿兴国, 欧修龙, 薛文辉. 人工构建二维准晶复合结构的减阻特性研究. 物理学报, 2009, 58(1): 421-426. doi: 10.7498/aps.58.421
    [11] 王宝, 汪家道, 陈大融. 基于微空泡效应的疏水性展向微沟槽表面水下减阻研究. 物理学报, 2014, 63(7): 074702. doi: 10.7498/aps.63.074702
    [12] 廖龙光, 付虹, 傅秀军. 十二次对称准周期结构的自相似变换及准晶胞构造. 物理学报, 2009, 58(10): 7088-7093. doi: 10.7498/aps.58.7088
    [13] 宋保维, 任峰, 胡海豹, 郭云鹤. 表面张力对疏水微结构表面减阻的影响. 物理学报, 2014, 63(5): 054708. doi: 10.7498/aps.63.054708
    [14] 曹永军, 董纯红, 周培勤. 一维准周期结构声子晶体透射性质的研究. 物理学报, 2006, 55(12): 6470-6475. doi: 10.7498/aps.55.6470
    [15] 曹永军, 杨 旭. 广义Fibonacci准周期结构声子晶体透射性质的研究. 物理学报, 2008, 57(6): 3620-3624. doi: 10.7498/aps.57.3620
    [16] 陈式刚, 陈肖兰, 王友琴. 强准粒子注入下具有时间周期结构的超导非平衡态. 物理学报, 1984, 33(2): 281-284. doi: 10.7498/aps.33.281
    [17] 张娟. 新型Fibonacci准周期结构一维等离子体光子晶体的全方位带隙特性研究. 物理学报, 2016, 65(24): 244204. doi: 10.7498/aps.65.244204
    [18] 刘静, 武瑜, 高勇. 沟槽型发射极SiGe异质结双极化晶体管新结构研究. 物理学报, 2014, 63(14): 148503. doi: 10.7498/aps.63.148503
    [19] 宋保维, 郭云鹤, 罗荘竹, 徐向辉, 王鹰. 疏水表面减阻环带实验研究. 物理学报, 2013, 62(15): 154701. doi: 10.7498/aps.62.154701
    [20] 管新蕾, 王维, 姜楠. 高聚物减阻溶液对壁湍流输运过程的影响. 物理学报, 2015, 64(9): 094703. doi: 10.7498/aps.64.094703
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1293
  • PDF下载量:  599
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-11
  • 修回日期:  2012-11-04
  • 刊出日期:  2013-03-05

一维周期与准周期排列沟槽结构的流体减阻特性研究

  • 1. 西北工业大学理学院, 教育部空间应用物理与化学重点实验室, 西安 710129
    基金项目: 

    国家自然科学基金(批准号:10872172)、陕西省自然科学基金(批准号: 2012JQ1016)、西北工业大学基础研究基金 (批准号: JC20100242, JCY20130147)和研究生种子基金(批准号:2012234)资助的课题.

摘要: 本文设计了具有相同平均沟槽密度的三种排列类型的一维沟槽结构: 密排列、周期间隔排列和两种准周期间隔排列, 并采用数值模拟和实验验证相结合的方法研究了一维沟槽结构在不同排列下的流体减阻特性. 模拟计算分析流场特征和总阻力, 发现相对于密排列和周期间隔排列的沟槽结构, 准周期间隔排列具有更好的减阻特性, 并且这一结果得到减阻实验的验证. 通过流场分布特性进一步分析沟槽结构的减阻机理. 机理分析发现高速流在经一维准周期结构的扰动波调制后形成了准周期间隔排列的速度条纹相, 这有效地抑制了大涡在流向和展向上的形成, 从而实现较大幅度的减阻. 同时对比分析沟槽排列结构调制展向涡和流向涡各自对流动减阻的贡献, 结果表明, 调制流向涡对减阻的作用更大.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回