搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不确定海洋声场中的检测性能损失环境敏感度度量

刘宗伟 孙超 杜金燕

不确定海洋声场中的检测性能损失环境敏感度度量

刘宗伟, 孙超, 杜金燕
PDF
导出引用
导出核心图
  • 现有的检测算法在实际的不确定海洋环境中会出现失配情况, 进而导致检测性能下降, 但是定量分析这种检测性能损失的工作却很少见, 因此本文定义了检测性能损失敏感度函数, 并给出了基于蒙特卡罗方法的计算方法.检测性能损失敏感度是一个表征海洋环境不确定度的物理量, 它反映了海洋参数变动和检测性能损失之间的关系.利用地中海某处海洋环境进行仿真, 针对各个海洋环境参数, 计算了全海域的检测性能敏感度. 结果表明: 1)检测性能损失呈现了很强的空间性, 在20 km处, 水面声速有4 m/s的变化下, 检测损失最小为1%, 而最大达到60%.声信道中的检测性能较为稳定, 其在远距离上更是如此; 2)各个海洋环境参数对检测性能损失有不同的影响, 水体声速剖面和第一层海底介质的声速和厚度是对检测性能影响最大的量; 3)环境参数敏感度呈现很强的频率特性, 海底底质参数包括底质厚度、密度和吸收系数等随着频率的升高对检测性能的损失影响变小.
    • 基金项目: 国家安全重大基础项目(批准号: 613110020101)和国家自然科学基金(批准号: 11274252)资助的课题.
    [1]

    Baggeroer A B, Kuperman W A, Mikhalevsky P N 1993 IEEE J. Ocean. Eng. 18 401

    [2]

    Pace N G, Jensen F B 2002 Impact of Littoral Environmental Variability of Acoustic Predictions and Sonar Performance (La Spezia, Italy: Kluwer Academic Publishers) p507

    [3]

    Sha L W, Nolte L W 2005 J. Acoust. Soc. Am. 117 1942

    [4]

    Schmidt H, Baggeroer A B, Kuperman W A, Scheer E K 1990 J. Acoust. Soc. Am. 88 1851

    [5]

    Krolik J L 1992 J. Acoust. Soc. Am. 92 1408

    [6]

    Lee N, Zurk L M, Ward J 1999 Signals, Systems and Computers, 1999 Conference Record of the Thirty-Third Asilomar Conference on Pacific Grove California, October 24-27, 1999 p876

    [7]

    Richardson A M, Nolte L W 1991 J. Acoust. Soc. Am. 89 2280

    [8]

    Shorey J A, Nolte L W, Krolik J L 1994 J. Comput. Acoust. 2 285

    [9]

    Sibul L H 2006 J. Acoust. Soc. Am. 119 3342

    [10]

    Culver R L, Camin H J 2008 J. Acoust. Soc. Am. 124 3619

    [11]

    Ballard J A, Culver R L 2009 IEEE J. Ocean. Eng. 34 128

    [12]

    Walker S C, Roux P, Kuperman W A 2005 J. Acoust. Soc. Am. 118 1518

    [13]

    Wang H Z, Wang N, Gao D Z 2011 Chin. Phys. Lett. 28 114302

    [14]

    Del Balzo D R, Feuillade C, Rowe M M 1988 J. Acoust. Soc. Am. 83 2180

    [15]

    Tolstoy A 1989 J. Acoust. Soc. Am. 85 2394

    [16]

    Zhao H F, Li J L, Gong X Y 2011 J. Harbin Eng. Univ. 32 200 (in Chinese) [赵航芳, 李建龙, 宫先仪 2011 哈尔滨工程大学学报 32 200]

    [17]

    Kessel R T 1999 J. Acoust. Soc. Am. 105 122

    [18]

    Dosso S E, Giles P M, Brooke G H, McCammon D F, Pecknold S, Hines P C 2007 J. Acoust. Soc. Am. 121 42

    [19]

    Dosso S E, Morley M G, Giles P M, Brooke G H, McCammon D F, Pecknold S, Hines P C 2007 J. Acoust. Soc. Am. 122 2560

    [20]

    Pecknold S P, Masui K W, Hines P C 2008 J. Acoust. Soc. Am. 124 EL110

    [21]

    Finette S 2005 J. Acoust. Soc. Am. 117 997

    [22]

    Porter M B 1991 The Kraken Normal Mode Program (La Spezia, Italy: SACLANT Underwater Acoustic Research Center)

    [23]

    Jensen F B, Kuperman W A, Portor M B, Schmidt H 2000 Computational Ocean Acoustics (New York: American Institute of Physics) p67

    [24]

    Kay S M 1993 Fundamentals of Statistical Signal Processing, Volume II: Detection Theory (Upper Saddle River, New Jersey: Prentice Hall) p34

  • [1]

    Baggeroer A B, Kuperman W A, Mikhalevsky P N 1993 IEEE J. Ocean. Eng. 18 401

    [2]

    Pace N G, Jensen F B 2002 Impact of Littoral Environmental Variability of Acoustic Predictions and Sonar Performance (La Spezia, Italy: Kluwer Academic Publishers) p507

    [3]

    Sha L W, Nolte L W 2005 J. Acoust. Soc. Am. 117 1942

    [4]

    Schmidt H, Baggeroer A B, Kuperman W A, Scheer E K 1990 J. Acoust. Soc. Am. 88 1851

    [5]

    Krolik J L 1992 J. Acoust. Soc. Am. 92 1408

    [6]

    Lee N, Zurk L M, Ward J 1999 Signals, Systems and Computers, 1999 Conference Record of the Thirty-Third Asilomar Conference on Pacific Grove California, October 24-27, 1999 p876

    [7]

    Richardson A M, Nolte L W 1991 J. Acoust. Soc. Am. 89 2280

    [8]

    Shorey J A, Nolte L W, Krolik J L 1994 J. Comput. Acoust. 2 285

    [9]

    Sibul L H 2006 J. Acoust. Soc. Am. 119 3342

    [10]

    Culver R L, Camin H J 2008 J. Acoust. Soc. Am. 124 3619

    [11]

    Ballard J A, Culver R L 2009 IEEE J. Ocean. Eng. 34 128

    [12]

    Walker S C, Roux P, Kuperman W A 2005 J. Acoust. Soc. Am. 118 1518

    [13]

    Wang H Z, Wang N, Gao D Z 2011 Chin. Phys. Lett. 28 114302

    [14]

    Del Balzo D R, Feuillade C, Rowe M M 1988 J. Acoust. Soc. Am. 83 2180

    [15]

    Tolstoy A 1989 J. Acoust. Soc. Am. 85 2394

    [16]

    Zhao H F, Li J L, Gong X Y 2011 J. Harbin Eng. Univ. 32 200 (in Chinese) [赵航芳, 李建龙, 宫先仪 2011 哈尔滨工程大学学报 32 200]

    [17]

    Kessel R T 1999 J. Acoust. Soc. Am. 105 122

    [18]

    Dosso S E, Giles P M, Brooke G H, McCammon D F, Pecknold S, Hines P C 2007 J. Acoust. Soc. Am. 121 42

    [19]

    Dosso S E, Morley M G, Giles P M, Brooke G H, McCammon D F, Pecknold S, Hines P C 2007 J. Acoust. Soc. Am. 122 2560

    [20]

    Pecknold S P, Masui K W, Hines P C 2008 J. Acoust. Soc. Am. 124 EL110

    [21]

    Finette S 2005 J. Acoust. Soc. Am. 117 997

    [22]

    Porter M B 1991 The Kraken Normal Mode Program (La Spezia, Italy: SACLANT Underwater Acoustic Research Center)

    [23]

    Jensen F B, Kuperman W A, Portor M B, Schmidt H 2000 Computational Ocean Acoustics (New York: American Institute of Physics) p67

    [24]

    Kay S M 1993 Fundamentals of Statistical Signal Processing, Volume II: Detection Theory (Upper Saddle River, New Jersey: Prentice Hall) p34

  • [1] 刘宗伟, 孙超, 向龙凤, 易锋. 不确定海洋环境中的模态子空间重构稳健定位方法. 物理学报, 2014, 63(3): 034304. doi: 10.7498/aps.63.034304
    [2] 李倩倩, 阳凡林, 张凯, 郑炳祥. 不确定海洋环境中基于贝叶斯理论的声源运动参数估计方法. 物理学报, 2016, 65(16): 164304. doi: 10.7498/aps.65.164304
    [3] 夏麾军, 马远良, 刘亚雄. 海洋环境噪声场对称性分析及噪声消除方法. 物理学报, 2016, 65(14): 144302. doi: 10.7498/aps.65.144302
    [4] 李赫, 郭新毅, 马力. 利用海洋环境噪声空间特性估计浅海海底分层结构及地声参数. 物理学报, 2019, 68(21): 214303. doi: 10.7498/aps.68.20190824
    [5] 江鹏飞, 林建恒, 孙军平, 衣雪娟. 考虑噪声源深度分布的海洋环境噪声模型及地声参数反演. 物理学报, 2017, 66(1): 014306. doi: 10.7498/aps.66.014306
    [6] 赵现斌, 严卫, 王迎强, 陆文, 马烁. 基于海面散射模型的全极化合成孔径雷达海洋环境探测关键技术参数设计仿真研究. 物理学报, 2014, 63(21): 218401. doi: 10.7498/aps.63.218401
    [7] 梁霄, 王瑞利. 爆轰流体力学模型敏感度分析与模型确认. 物理学报, 2017, 66(11): 116401. doi: 10.7498/aps.66.116401
    [8] 高当丽, 李蓝星, 冯小娟, 种波, 辛红, 赵瑾, 张翔宇. Yb浓度对功率依赖的上转换荧光色彩的敏感度调控. 物理学报, 2018, 67(22): 223201. doi: 10.7498/aps.67.20181167
    [9] 刘晶晶, 孙俊君, 胡海云, 邢修三. 海洋腐蚀条件下材料环境失效的寿命预测. 物理学报, 2005, 54(5): 2414-2417. doi: 10.7498/aps.54.2414
    [10] 张蔚泓, 牛中明, 王枫, 龚孝波, 孙保华. 宇宙核时钟不确定度的研究. 物理学报, 2012, 61(11): 112601. doi: 10.7498/aps.61.112601
    [11] 焦尚彬, 任超, 黄伟超, 梁炎明. 稳定噪声环境下多频微弱信号检测的参数诱导随机共振现象. 物理学报, 2013, 62(21): 210501. doi: 10.7498/aps.62.210501
    [12] 孔德智, 孙超, 李明杨. 浅海环境中基于模态衰减规律加权的子空间检测方法. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191948
    [13] 尚万里, 朱托, 况龙钰, 张文海, 赵阳, 熊刚, 易荣清, 李三伟, 杨家敏. 透射光栅谱仪测谱不确定度分析. 物理学报, 2013, 62(17): 170602. doi: 10.7498/aps.62.170602
    [14] 张登玉, 高 峰, 郭 萍. 强热辐射环境中两能级原子量子态保真度. 物理学报, 2007, 56(4): 1906-1910. doi: 10.7498/aps.56.1906
    [15] 陈伯伦, 杨正华, 曹柱荣, 董建军, 侯立飞, 崔延莉, 江少恩, 易荣清, 李三伟, 刘慎业, 杨家敏. 同步辐射标定平面镜反射率不确定度分析方法研究. 物理学报, 2010, 59(10): 7078-7085. doi: 10.7498/aps.59.7078
    [16] 寇添, 王海晏, 王芳, 吴学铭, 王领, 徐强. 机载多脉冲激光测距特性及其不确定度研究. 物理学报, 2015, 64(12): 120601. doi: 10.7498/aps.64.120601
    [17] 胡泽华, 叶涛, 刘雄国, 王佳. 抽样法与灵敏度法keff不确定度量化. 物理学报, 2017, 66(1): 012801. doi: 10.7498/aps.66.012801
    [18] 孙晨, 冯玉涛, 傅頔, 张亚飞, 李娟, 刘学斌. 多普勒差分干涉仪干涉图信噪比对相位不确定度研究. 物理学报, 2020, 69(1): 014202. doi: 10.7498/aps.69.20191179
    [19] 郑毓峰, 邓榕平, 查朝征, 戴伯荣, 石磊, 周贵恩. Cd(S,Se)薄膜的结构及退火环境对其电导性能的影响. 物理学报, 1995, 44(2): 266-272. doi: 10.7498/aps.44.266
    [20] 朱金龙, 赵予生, 靳常青. 水合物研制、结构与性能及其在能源环境中的应用. 物理学报, 2019, 68(1): 018203. doi: 10.7498/aps.68.20181639
  • 引用本文:
    Citation:
计量
  • 文章访问数:  879
  • PDF下载量:  578
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-15
  • 修回日期:  2012-09-20
  • 刊出日期:  2013-03-20

不确定海洋声场中的检测性能损失环境敏感度度量

  • 1. 西北工业大学航海学院, 西安 710072
    基金项目: 

    国家安全重大基础项目(批准号: 613110020101)和国家自然科学基金(批准号: 11274252)资助的课题.

摘要: 现有的检测算法在实际的不确定海洋环境中会出现失配情况, 进而导致检测性能下降, 但是定量分析这种检测性能损失的工作却很少见, 因此本文定义了检测性能损失敏感度函数, 并给出了基于蒙特卡罗方法的计算方法.检测性能损失敏感度是一个表征海洋环境不确定度的物理量, 它反映了海洋参数变动和检测性能损失之间的关系.利用地中海某处海洋环境进行仿真, 针对各个海洋环境参数, 计算了全海域的检测性能敏感度. 结果表明: 1)检测性能损失呈现了很强的空间性, 在20 km处, 水面声速有4 m/s的变化下, 检测损失最小为1%, 而最大达到60%.声信道中的检测性能较为稳定, 其在远距离上更是如此; 2)各个海洋环境参数对检测性能损失有不同的影响, 水体声速剖面和第一层海底介质的声速和厚度是对检测性能影响最大的量; 3)环境参数敏感度呈现很强的频率特性, 海底底质参数包括底质厚度、密度和吸收系数等随着频率的升高对检测性能的损失影响变小.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回