- 
				研究强度相关耦合双Jaynes-Cummings模型中, 两运动原子初始处于最大纠缠态、光场初始处于单模热态时, 强度相关耦合、热光场平均光子数以及原子运动对两原子的纠缠和量子失谐的影响. 结果表明: 考虑强度相关耦合时, 纠缠和量子失谐均出现周期性地消失和回复现象, 并且, 回复以后的纠缠和量子失谐能达到初始值. 腔场温度的升高会加速纠缠和量子失谐的消失. 此外, 原子运动的场模结构参数对该模型中的纠缠和量子失谐影响很大, 其值选择合适时, 两个原子能够自始至终地保持纠缠或量子失谐状态.- 
												关键词:
												
- 强度相关耦合 /
- 双Jaynes-Cummings模型 /
- 纠缠 /
- 量子失谐
 Considering a double J-C model with intensity-dependent coupling, we have studied the effects of the intensity-dependent coupling, the mean photon numbers and the atomic motion, on the entanglement and quantum discord between the two two-level atoms when the moving atoms are initially in a maximally entangled state and the fields are in the single-mode thermal fields. The results show that, the entanglement and quantum discord disappear and revive periodically, and can have up to their starting values after revival. A rise in cavity temperature accelerates the death of the entanglement and quantum discord. In addition, the field-mode structural parameter has a strong effect on the entanglement and quantum discord in the system. When the field-mode structural parameter takes a suitable value, the entanglement and quantum discord of the two atoms can be kept from start to finish.- 
													Keywords:
													
- intensity-dependent coupling /
- double Jaynes-Cummings model /
- entanglement /
- quantum discord
 [1] Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge University Press: Cambridge) [2] Briegel H J, Drr W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932 [3] Rosenfeld W, Hocke F, Henkel F, Krug M, Volz J, Weber M, Weinfurter H 2008 Phys. Rev. Lett. 101 260403 [4] Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404 [5] Yönac M, Eberly J H 2008 Opt. Lett. 33 270 [6] Lettner M, Mcke M, Riedl S, Vo C, Hahn C, Baur S, Bochmann J, Ritter S, Drr S, Rempe G 2011 Phys. Rev. Lett. 106 210503 [7] Yönac M, Eberly J H 2010 Phys. Rev. A 82 022321 [8] Man Z X, Xia Y J, An N B 2012 Phys. Rev. A 86 012325 [9] Lu D M 2012 Acta Phys. Sin. 61 180301 (in Chinese) [卢道明 2012 物理学报 61 180301] [10] Jaynes E T, Cummings F W 1963 Proc IEEE 51 89 [11] Buck B, Sukumar C V 1981 Phys. Lett. A 81 132 [12] Barzanjeh Sh, Naderi M H, Soltanolkotabi M 2011 Phys. Rev. A 84 063850 [13] Liu X J, Zhou B J, Liu Y M, Jiang C L 2012 Acta Phys. Sin. 61 230301 (in Chinese) [刘小娟, 周并举, 刘一曼, 姜春蕾 2012 物理学报 61 230301] [14] El-Orany Faisal A A 2006 J. Mod. Opt. 53 1699 [15] Xiong H N, Guo H 2007 Chin. Phys. Lett. 24 1805 [16] Dakic B, Vedral V, Brukner C 2010 Phys. Rev. Lett. 105 190502 [17] Knill E, Laflamme R 1998 Phys. Rev. Lett. 81 5672 [18] Bihama E, Brassardb G, Kenigsberga D, Mor T 2004 Theor. Comput. Sci. 320 15 [19] Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901 [20] Lanyon B P, Barbieri M, Almeida M P, White A G 2008 Phys. Rev. Lett. 101 200501 [21] Datta A, Shaji A, Caves Carlton M 2008 Phys. Rev. Lett. 100 050502 [22] Cui J, Fan H 2010 J. Phys. A: Math. Theor. 43 045305 [23] Allegra M, Giorda P, Montorsi A 2011 Phys. Rev. B 84 245133 [24] Xu J W, Chen Q H 2012 Chin. Phys. B 21 040302 [25] Man Z X, Xia Y J, An N B 2011 J. Phys. B 44 095504 [26] Blandino R, Genoni M G, Etesse J, Barbieri M, Paris M G A, Grangier P, Tualle-Brouri R 2012 Phys. Rev. Lett. 109 180402 [27] Schlicher R R 1989 Opt. Commum. 70 97 [28] Wootters W K 1998 Phys. Rev. Lett. 80 2245 [29] Hill S 1997 Phys. Rev. Lett. 78 5022 [30] Vedral V 2002 Rev. Mod. Phys. 74 197 [31] Henderson L, Vedral V 2001 J. Phys. A 34 6899 
- 
				
[1] Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge University Press: Cambridge) [2] Briegel H J, Drr W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932 [3] Rosenfeld W, Hocke F, Henkel F, Krug M, Volz J, Weber M, Weinfurter H 2008 Phys. Rev. Lett. 101 260403 [4] Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404 [5] Yönac M, Eberly J H 2008 Opt. Lett. 33 270 [6] Lettner M, Mcke M, Riedl S, Vo C, Hahn C, Baur S, Bochmann J, Ritter S, Drr S, Rempe G 2011 Phys. Rev. Lett. 106 210503 [7] Yönac M, Eberly J H 2010 Phys. Rev. A 82 022321 [8] Man Z X, Xia Y J, An N B 2012 Phys. Rev. A 86 012325 [9] Lu D M 2012 Acta Phys. Sin. 61 180301 (in Chinese) [卢道明 2012 物理学报 61 180301] [10] Jaynes E T, Cummings F W 1963 Proc IEEE 51 89 [11] Buck B, Sukumar C V 1981 Phys. Lett. A 81 132 [12] Barzanjeh Sh, Naderi M H, Soltanolkotabi M 2011 Phys. Rev. A 84 063850 [13] Liu X J, Zhou B J, Liu Y M, Jiang C L 2012 Acta Phys. Sin. 61 230301 (in Chinese) [刘小娟, 周并举, 刘一曼, 姜春蕾 2012 物理学报 61 230301] [14] El-Orany Faisal A A 2006 J. Mod. Opt. 53 1699 [15] Xiong H N, Guo H 2007 Chin. Phys. Lett. 24 1805 [16] Dakic B, Vedral V, Brukner C 2010 Phys. Rev. Lett. 105 190502 [17] Knill E, Laflamme R 1998 Phys. Rev. Lett. 81 5672 [18] Bihama E, Brassardb G, Kenigsberga D, Mor T 2004 Theor. Comput. Sci. 320 15 [19] Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901 [20] Lanyon B P, Barbieri M, Almeida M P, White A G 2008 Phys. Rev. Lett. 101 200501 [21] Datta A, Shaji A, Caves Carlton M 2008 Phys. Rev. Lett. 100 050502 [22] Cui J, Fan H 2010 J. Phys. A: Math. Theor. 43 045305 [23] Allegra M, Giorda P, Montorsi A 2011 Phys. Rev. B 84 245133 [24] Xu J W, Chen Q H 2012 Chin. Phys. B 21 040302 [25] Man Z X, Xia Y J, An N B 2011 J. Phys. B 44 095504 [26] Blandino R, Genoni M G, Etesse J, Barbieri M, Paris M G A, Grangier P, Tualle-Brouri R 2012 Phys. Rev. Lett. 109 180402 [27] Schlicher R R 1989 Opt. Commum. 70 97 [28] Wootters W K 1998 Phys. Rev. Lett. 80 2245 [29] Hill S 1997 Phys. Rev. Lett. 78 5022 [30] Vedral V 2002 Rev. Mod. Phys. 74 197 [31] Henderson L, Vedral V 2001 J. Phys. A 34 6899 
计量
- 文章访问数: 10151
- PDF下载量: 559
- 被引次数: 0


 
					 
		         
	         
  
					 
										




 下载:
下载: 
				