搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弹性壳结构静力与动力分析的光滑粒子法

明付仁 张阿漫 姚熊亮

弹性壳结构静力与动力分析的光滑粒子法

明付仁, 张阿漫, 姚熊亮
PDF
导出引用
导出核心图
  • 本文通过采用移动最小二乘函数作为近似函数 和完全拉格朗日方程作为近似方程来改善光滑粒子法的稳定性和数值精度; 在此基础上, 提出了壳结构静力分析的光滑粒子法, 并完善了壳结构动力分析方法; 最后, 采用国际公认的壳结构的标准测试模型对静力和动力问题分别进行了验证, 所得结果与已有数据吻合良好, 证明了本文数值模型的有效性和可靠性, 为光滑粒子法进一步在裂纹、破碎等非线性壳结构中的应用提供参考.
    • 基金项目: 国家自然科学基金优秀青年基金 (批准号: 51222904)、国家自然科学基金重点项目 (批准号: 50939002) 和the Llyod's Register Educational Trust (The LRET) 资助的课题.
    [1]

    Au F T K, Cheung Y K 1996 Thin wall Struct. 24 53

    [2]

    Morino L, Leech J W, Witmer E A 1971 J. Appl. Mech. 38 429

    [3]

    Rossing T D, Fletcher N H 1983 J. Acoust. Soc. Am. 73 345

    [4]

    Timoshenko S, Woinowsky-Krieger S 1959 Theory of plates and shells (2nd Edn.) (New York: Mcgraw-Hill) p201

    [5]

    Parisch H 1995 Int. J. Numer. Meth. Engng. 38 1855

    [6]

    Reddy J N 2007 Theory and analysis of elastic plates and shells (2nd Edn.) (Florida: CRC) p21

    [7]

    Krysl P, Belytschko T 1996 Int. J. Solids Struct. 33 3057

    [8]

    Noguchi H, Kawashima T, Miyamura T 2000 Int. J. Numer. Meth Engng. 47 1215

    [9]

    Rabczuk T, Areias P M A, BelytschkoT 2007 Int. J. Numer. Meth Engng. 72 524

    [10]

    Wang D, Chen J S 2003 Comput. Methods Appl. Mech. Engrg. 193 1065

    [11]

    Miao Y, WangY 2005 Eng. Anal. Bound. Elem. 29 703

    [12]

    Li S, Hao W, Liu W K 2000 Comput. Mech. 25 102

    [13]

    Garcia O, Fancello E A, de Barcellos C S, Duarte C A 2000 Int. J. Numer. Meth Engng. 47 1381

    [14]

    Sladek J, SladekV, Wen P H, Aliabadi M H 2006 CMES-Comp. Model Eng. 13 103

    [15]

    Oh H S, Davis C, Jeong J W 2012 Comput. Methods Appl. Mech. Engrg. 209 156

    [16]

    Liu G R 2002 Int. J. Solids Struct. 39 261

    [17]

    Cheng Y M, Li J H 2005 Acta Phys. Sin. 54 4463 (in Chinese) [程玉民, 李九红 2005 物理学报 54 4463]

    [18]

    Yang X L, Dai B D, Li Z F 2012 Acta Phys. Sin. 61 050204 (in Chinese) [杨秀丽, 戴保东, 栗振锋 2012 物理学报 61 050204]

    [19]

    Qin Y X, Cheng Y M 2006 Acta Phys. Sin. 55 3215 (in Chinese) [秦义校, 程玉民 2006 物理学报 55 3215]

    [20]

    Belytschko T, Black T 1999 Int. J. Numer. Meth Engng. 45 601

    [21]

    Unossona M, Olovssona L, Simonssonb K 2006 Finite Elem. Anal. Des. 42 283

    [22]

    Moes N, Dolbow J, Belytschko T 1999 Int. J. Numer. Meth. Engng. 46 133

    [23]

    Chang J Z, Liu M B, Liu H T 2008 Acta Phys. Sin. 57 3954 (in Chinese) [常建忠, 刘谋斌, 刘汉涛 2008 物理学报 57 3954]

    [24]

    Liu M B, Chang J Z 2010 Acta Phys. Sin. 59 3654 (in Chinese) [刘谋斌, 常建忠 2010 物理学报 59 3654]

    [25]

    Shao J R, Li H Q, Liu G R, Liu M B 2012 Comput. Struct. 100-101 18

    [26]

    Randles P W, Libersky L D 2000 Int. J. Numer. Meth Engng. 48 1445

    [27]

    Dilts G A 1999 Int. J. Numer. Meth Engng. 44 1115

    [28]

    Dilts G A 2000 Int. J. Numer. Meth Engng. 48 1503

    [29]

    Vidal Y, Bonet J, Huerta A 2007 Int. J. Numer. Meth Engng. 69 2687

    [30]

    Belytschko T, Rabczuk T, Xiao S P 2004 Comput. Methods Appl. Mech. 193 1035

    [31]

    Maurel B, Combescure A 2008 Int. J. Numer. Meth Engng. 76 949

    [32]

    Maurel B, Combescure A, Potapov S 2006 Eur. J. Comput. Mech. 15 495

    [33]

    Shepard D 1968 Proceedings of the 23rd ACM national conference New York, August 27-29, 1968 p517

    [34]

    Bonet J, Lok T S L 1999 Comput. Methods Appl. Mech. Engrg. 180 97

    [35]

    Liu W K, Li S, Belytschko T 1997 Comput. Methods Appl. Mech. Engrg. 143 113

    [36]

    Johnson G R, Stryk R A, Beissel S R 1996 Comput. Methods Appl. Mech. Engrg. 139 347

    [37]

    Belytschko T, Krongauz Y, Dolbow J, Gerlach C 1998 Int. J. Numer. Meth Engng. 43 785

    [38]

    KrongauzY, BelytschkoT 1997 Comput. Methods Appl. Mech. Engrg. 146 371

    [39]

    Randles P W, Libersky L D 1996 Comput. Methods Appl. Mech. Engrg. 139 375

    [40]

    Kanok-Nukulchai W, Bary W, Saran-Yasoontorn K, Bouillard P H 2001 Int. J. Numer. Meth Engng. 52 705

    [41]

    Belytschko T, Liu W K, Moran B 2000 Nonlinear Finite Elements for Continua and Structures ( New York: John Wiley and Sons Ltd) p1

    [42]

    Liu G R, Liu M B 2003 Smoothed particle hydrodynamics: a meshfree particle method. (Singapore: World Scientific) p1

    [43]

    Caleyron F, Combescure A, Faucher V Potapov S 2012 Int. J. Numer. Meth Engng. 90 707

    [44]

    Dyka C T, Randles P W, Ingel R P 1997 Int. J. Numer. Meth Engng. 40 2325

    [45]

    Belytschko T, Guo Y, Liu W K, Xiao S P 2000 Int. J. Numer. Meth Engng. 40 1359

    [46]

    Hughes T J R, Liu W K 1978 J. Appl. Mech. 45 371

    [47]

    Monaghan J J, Gingold R 1983 J. Comput. Phys. 52 374

    [48]

    Betsch P, Menzel A, Stein E 1998 Comput. Methods Appl. Mech. 155 273

    [49]

    Macneal R H, Harder R L 1985 Finite Elem. Anal. Des. 1 3

    [50]

    Simo J C, Fox D D, Rifai M S 1989 Comput. Methods Appl. Mech. 73 53

    [51]

    Swaddiwudhipong S, Liu Z S 1996 Thin Wall Struct. 26 223

    [52]

    Owen D R J, Hinton E 1980 Finite Elements in Plasticity: Theory and Practice (Swansea: Pineridge press) p254

  • [1]

    Au F T K, Cheung Y K 1996 Thin wall Struct. 24 53

    [2]

    Morino L, Leech J W, Witmer E A 1971 J. Appl. Mech. 38 429

    [3]

    Rossing T D, Fletcher N H 1983 J. Acoust. Soc. Am. 73 345

    [4]

    Timoshenko S, Woinowsky-Krieger S 1959 Theory of plates and shells (2nd Edn.) (New York: Mcgraw-Hill) p201

    [5]

    Parisch H 1995 Int. J. Numer. Meth. Engng. 38 1855

    [6]

    Reddy J N 2007 Theory and analysis of elastic plates and shells (2nd Edn.) (Florida: CRC) p21

    [7]

    Krysl P, Belytschko T 1996 Int. J. Solids Struct. 33 3057

    [8]

    Noguchi H, Kawashima T, Miyamura T 2000 Int. J. Numer. Meth Engng. 47 1215

    [9]

    Rabczuk T, Areias P M A, BelytschkoT 2007 Int. J. Numer. Meth Engng. 72 524

    [10]

    Wang D, Chen J S 2003 Comput. Methods Appl. Mech. Engrg. 193 1065

    [11]

    Miao Y, WangY 2005 Eng. Anal. Bound. Elem. 29 703

    [12]

    Li S, Hao W, Liu W K 2000 Comput. Mech. 25 102

    [13]

    Garcia O, Fancello E A, de Barcellos C S, Duarte C A 2000 Int. J. Numer. Meth Engng. 47 1381

    [14]

    Sladek J, SladekV, Wen P H, Aliabadi M H 2006 CMES-Comp. Model Eng. 13 103

    [15]

    Oh H S, Davis C, Jeong J W 2012 Comput. Methods Appl. Mech. Engrg. 209 156

    [16]

    Liu G R 2002 Int. J. Solids Struct. 39 261

    [17]

    Cheng Y M, Li J H 2005 Acta Phys. Sin. 54 4463 (in Chinese) [程玉民, 李九红 2005 物理学报 54 4463]

    [18]

    Yang X L, Dai B D, Li Z F 2012 Acta Phys. Sin. 61 050204 (in Chinese) [杨秀丽, 戴保东, 栗振锋 2012 物理学报 61 050204]

    [19]

    Qin Y X, Cheng Y M 2006 Acta Phys. Sin. 55 3215 (in Chinese) [秦义校, 程玉民 2006 物理学报 55 3215]

    [20]

    Belytschko T, Black T 1999 Int. J. Numer. Meth Engng. 45 601

    [21]

    Unossona M, Olovssona L, Simonssonb K 2006 Finite Elem. Anal. Des. 42 283

    [22]

    Moes N, Dolbow J, Belytschko T 1999 Int. J. Numer. Meth. Engng. 46 133

    [23]

    Chang J Z, Liu M B, Liu H T 2008 Acta Phys. Sin. 57 3954 (in Chinese) [常建忠, 刘谋斌, 刘汉涛 2008 物理学报 57 3954]

    [24]

    Liu M B, Chang J Z 2010 Acta Phys. Sin. 59 3654 (in Chinese) [刘谋斌, 常建忠 2010 物理学报 59 3654]

    [25]

    Shao J R, Li H Q, Liu G R, Liu M B 2012 Comput. Struct. 100-101 18

    [26]

    Randles P W, Libersky L D 2000 Int. J. Numer. Meth Engng. 48 1445

    [27]

    Dilts G A 1999 Int. J. Numer. Meth Engng. 44 1115

    [28]

    Dilts G A 2000 Int. J. Numer. Meth Engng. 48 1503

    [29]

    Vidal Y, Bonet J, Huerta A 2007 Int. J. Numer. Meth Engng. 69 2687

    [30]

    Belytschko T, Rabczuk T, Xiao S P 2004 Comput. Methods Appl. Mech. 193 1035

    [31]

    Maurel B, Combescure A 2008 Int. J. Numer. Meth Engng. 76 949

    [32]

    Maurel B, Combescure A, Potapov S 2006 Eur. J. Comput. Mech. 15 495

    [33]

    Shepard D 1968 Proceedings of the 23rd ACM national conference New York, August 27-29, 1968 p517

    [34]

    Bonet J, Lok T S L 1999 Comput. Methods Appl. Mech. Engrg. 180 97

    [35]

    Liu W K, Li S, Belytschko T 1997 Comput. Methods Appl. Mech. Engrg. 143 113

    [36]

    Johnson G R, Stryk R A, Beissel S R 1996 Comput. Methods Appl. Mech. Engrg. 139 347

    [37]

    Belytschko T, Krongauz Y, Dolbow J, Gerlach C 1998 Int. J. Numer. Meth Engng. 43 785

    [38]

    KrongauzY, BelytschkoT 1997 Comput. Methods Appl. Mech. Engrg. 146 371

    [39]

    Randles P W, Libersky L D 1996 Comput. Methods Appl. Mech. Engrg. 139 375

    [40]

    Kanok-Nukulchai W, Bary W, Saran-Yasoontorn K, Bouillard P H 2001 Int. J. Numer. Meth Engng. 52 705

    [41]

    Belytschko T, Liu W K, Moran B 2000 Nonlinear Finite Elements for Continua and Structures ( New York: John Wiley and Sons Ltd) p1

    [42]

    Liu G R, Liu M B 2003 Smoothed particle hydrodynamics: a meshfree particle method. (Singapore: World Scientific) p1

    [43]

    Caleyron F, Combescure A, Faucher V Potapov S 2012 Int. J. Numer. Meth Engng. 90 707

    [44]

    Dyka C T, Randles P W, Ingel R P 1997 Int. J. Numer. Meth Engng. 40 2325

    [45]

    Belytschko T, Guo Y, Liu W K, Xiao S P 2000 Int. J. Numer. Meth Engng. 40 1359

    [46]

    Hughes T J R, Liu W K 1978 J. Appl. Mech. 45 371

    [47]

    Monaghan J J, Gingold R 1983 J. Comput. Phys. 52 374

    [48]

    Betsch P, Menzel A, Stein E 1998 Comput. Methods Appl. Mech. 155 273

    [49]

    Macneal R H, Harder R L 1985 Finite Elem. Anal. Des. 1 3

    [50]

    Simo J C, Fox D D, Rifai M S 1989 Comput. Methods Appl. Mech. 73 53

    [51]

    Swaddiwudhipong S, Liu Z S 1996 Thin Wall Struct. 26 223

    [52]

    Owen D R J, Hinton E 1980 Finite Elements in Plasticity: Theory and Practice (Swansea: Pineridge press) p254

  • [1] 杨秀峰, 刘谋斌. 瑞利-泰勒不稳定问题的光滑粒子法模拟研究. 物理学报, 2017, 66(16): 164701. doi: 10.7498/aps.66.164701
    [2] 张海超, 郑丹晨, 边茂松, 韩敏. 一种基于二维光滑粒子法的流体仿真方法. 物理学报, 2016, 65(24): 244701. doi: 10.7498/aps.65.244701
    [3] 常建忠, 刘谋斌. 光滑粒子动力学方法中粒子分布与数值稳定性分析. 物理学报, 2010, 59(6): 3654-3662. doi: 10.7498/aps.59.3654
    [4] 汪志刚, 黄娆, 文玉华. Pt-Au核-壳结构纳米粒子热稳定性的分子动力学研究. 物理学报, 2013, 62(12): 126101. doi: 10.7498/aps.62.126101
    [5] 杨秀峰, 刘谋斌. 光滑粒子动力学SPH方法应力不稳定性的一种改进方案 . 物理学报, 2012, 61(22): 224701. doi: 10.7498/aps.61.224701
    [6] 刘延柱, 盛立伟. 圆截面弹性螺旋杆的稳定性与振动. 物理学报, 2007, 56(4): 2305-2310. doi: 10.7498/aps.56.2305
    [7] 李 鹤, 李学东, 李 娟, 吴春亚, 孟志国, 熊绍珍, 张丽珠. 表面修饰改善溶液法金属诱导晶化薄膜稳定性与均匀性研究. 物理学报, 2008, 57(4): 2476-2480. doi: 10.7498/aps.57.2476
    [8] 王丽吉, 陈泽宇, 凌超, 吕达仁. 中层大气静力稳定性减弱趋势——历史火箭探空数据分析. 物理学报, 2015, 64(16): 169201. doi: 10.7498/aps.64.169201
    [9] 欧发, 蔡永强. 普适性的光学双稳及激光动力学方程和稳定性分析. 物理学报, 1988, 37(2): 330-334. doi: 10.7498/aps.37.330
    [10] 冯 伟, 高洪芬, 李开泰, 魏高峰. 非协调数值流形方法的稳定性和收敛性分析. 物理学报, 2008, 57(2): 639-647. doi: 10.7498/aps.57.639
    [11] 王鹏, 薛纭, 楼智美. 黏性流体中超细长弹性杆的动力学不稳定性. 物理学报, 2017, 66(9): 094501. doi: 10.7498/aps.66.094501
    [12] 葛曼玲, 魏孟佳, 师鹏飞, 陈营, 付晓璇, 郭宝强, 张惠娟. 低频振荡电位的能量和相位稳定性与偶极子电流活动相关性的仿真. 物理学报, 2015, 64(14): 148701. doi: 10.7498/aps.64.148701
    [13] 马理强, 常建忠, 刘汉涛, 刘谋斌. 液滴溅落问题的光滑粒子动力学模拟. 物理学报, 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [14] 谢文佳, 李桦, 潘沙, 田正雨. 一类新型激波捕捉格式的耗散性与稳定性分析. 物理学报, 2015, 64(2): 024702. doi: 10.7498/aps.64.024702
    [15] 胡文, 赵广浩, 张弓, 张景乔, 刘贤龙. 时标正弦动力学方程稳定性与分岔分析. 物理学报, 2012, 61(17): 170505. doi: 10.7498/aps.61.170505
    [16] 石秉仁, 隋国芳, 郭干城. 离子动力参数区托卡马克电阻性内扭曲模稳定性分析. 物理学报, 1996, 45(5): 801-810. doi: 10.7498/aps.45.801
    [17] 胡海昌. 开口截面弹性薄壁杆件的稳定性. 物理学报, 1956, 1601(2): 152-169.
    [18] 薛 纭, 陈立群, 刘延柱. 弹性细杆平衡的动态稳定性. 物理学报, 2004, 53(8): 2424-2428. doi: 10.7498/aps.53.2424
    [19] 王 坤. 相对转动动力学方程的稳定性及在一类黏弹性系数下的解. 物理学报, 2005, 54(9): 3987-3991. doi: 10.7498/aps.54.3987
    [20] 孟 宗, 刘 彬. 相对转动非线性动力学方程的稳定性及在一类非线性弹性系数下的解. 物理学报, 2007, 56(11): 6194-6198. doi: 10.7498/aps.56.6194
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1065
  • PDF下载量:  744
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-25
  • 修回日期:  2013-01-17
  • 刊出日期:  2013-06-05

弹性壳结构静力与动力分析的光滑粒子法

  • 1. 哈尔滨工程大学船舶工程学院, 哈尔滨 150001
    基金项目: 

    国家自然科学基金优秀青年基金 (批准号: 51222904)、国家自然科学基金重点项目 (批准号: 50939002) 和the Llyod's Register Educational Trust (The LRET) 资助的课题.

摘要: 本文通过采用移动最小二乘函数作为近似函数 和完全拉格朗日方程作为近似方程来改善光滑粒子法的稳定性和数值精度; 在此基础上, 提出了壳结构静力分析的光滑粒子法, 并完善了壳结构动力分析方法; 最后, 采用国际公认的壳结构的标准测试模型对静力和动力问题分别进行了验证, 所得结果与已有数据吻合良好, 证明了本文数值模型的有效性和可靠性, 为光滑粒子法进一步在裂纹、破碎等非线性壳结构中的应用提供参考.

English Abstract

参考文献 (52)

目录

    /

    返回文章
    返回