搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光滑粒子动力学SPH方法应力不稳定性的一种改进方案

杨秀峰 刘谋斌

光滑粒子动力学SPH方法应力不稳定性的一种改进方案

杨秀峰, 刘谋斌
PDF
导出引用
  • 光滑粒子动力学方法是一种拉格朗日型无网格粒子方法, 在模拟大变形和自由表面流方面具有特殊的优势, 已经在工程和科学领域得到了广泛的应用. 然而, 长期以来, 传统光滑粒子动力学方法一直受到应力不稳定性的困扰, 从而限制了它的进一步发展和应用. 应力不稳定性的根本原因在于应力状态与核函数的不匹配:负压状态下粒子间产生吸引力, 吸引力随着粒子间距的减小而增大, 导致拉伸不稳定性;正压状态下粒子间产生排斥力, 排斥力随着粒子间距的减小而先增大后减小, 导致压缩不稳定性. 本文通过改进光滑粒子动力学方法的核函数和离散格式, 使得无论在正压还是负压状态下粒子间的作用力恒为排斥力, 且排斥力随着粒子间距的减小而增大, 从而防止粒子聚集等现象, 解决应力不稳定问题. 分别使用改进前后的光滑粒子动力学方法模拟两个典型的应力不稳定算例, 结果表明本文的改进方法能够有效地消除应力不稳定性.
    [1]

    Lucy L B 1977 Astron. J. 82 1013

    [2]

    Gingold R A, Monaghan J J 1977 Mon. Not. R. Astron. Soc. 181 375

    [3]

    Liu G R, Liu M B 2003 Smoothed particle hydrodynamics: a meshfree particle method (Singapore: World Scientific) p36

    [4]

    Liu M B, Liu G R, Zong Z 2008 Int. J. Comput. Methods 5 135

    [5]

    Monaghan J J 2005 Rep. Prog. Phys. 68 1703

    [6]

    Liu M B, Chang J Z 2010 Acta Phys. Sin. 59 7556 (in Chinese) [刘谋斌, 常建忠 2010 物理学报 59 7556]

    [7]

    Swegle J W, Hicks D L, Attaway S W 1995 J. Comput. Phys. 116 123

    [8]

    Dyka C T, Ingel R P 1995 Comput. Struct. 57 573

    [9]

    Zhang J Z, Zheng J, Yu K P, Wei Y J 2010 Eng. Mech. 27 65 (in Chinese) [张嘉钟, 郑俊, 于开平, 魏英杰 2010 工程力学 27 65]

    [10]

    Zheng J 2010 Ph. D. Dissertation (Harbin: Harbin Institute of Technoloty) (in Chinese) [郑俊 2010 博士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [11]

    Morris J P 1995 Pulb. Astron. Soc. Aust. 13 97

    [12]

    Dyka C T, Randles P W, Ingel R P 1997 Int. J. Num. Methods Eng. 40 2325

    [13]

    Randles P W, Libersky L D 2000 Int. J. Num. Methods Eng. 48 1445

    [14]

    Morris J P 1996 Ph.D. Dissertation (Melbourne: Monash University)

    [15]

    Johnson G R, Stryk R A, Beissel S R 1996 Comput. Methods Appl. Mech. Eng. 139 347

    [16]

    Johnson G R, Beissel S R 1996 Int. J. Num. Methods Eng. 39 2725

    [17]

    Hicks D L, Liebrock L M 1999 Comput. Math. Appl. 38 1

    [18]

    Belytschko T, Guo Y, Liu W K, Xiao S P 2000 Int. J. Num. Methods Eng. 48 1359

    [19]

    Zhang G M, Wang X J, Hu X Z, Zhou Z 2003 Explosion and Shock Waves 23 219 (in Chinese) [张刚明, 王肖钧, 胡秀章, 周钟 2003 爆炸与冲击 23 219]

    [20]

    Hicks D L, Swegle J W, Attaway S W 1997 Appl. Math. Comput. 85 209

    [21]

    Wen Y, Hicks D L, Swegle J W 1994 Sandia Report SAND94-1932

    [22]

    Chen J K, Beraun J E, Jih C J 1999 Comput. Mech. 23 279

    [23]

    Monaghan J J 2000 J. Comput. Phys. 159 290

    [24]

    Gray J P, Monaghan J J, Swift R P 2001 Comput. Methods Appl. Mech. Eng. 190 6641

    [25]

    Jia B, Ma Z T, Zhang W, Pang B J 2010 J. of Harbin Institute of Technology 42 1369 (in Chinese) [贾斌, 马志涛, 张伟, 庞宝君 2010 哈尔滨工业大学学报 42 1369]

    [26]

    Liu W K, Jun S, Zhang Y F 1995 Int. J. Num. Methods in Fluids 20 1081

    [27]

    Dilts G A 1999 Int. J. Num. Methods Eng. 44 1115

    [28]

    Fu X J, Qiang H F, Yang Y C 2007 Advances in Mech. 37 375 (in Chinese) [傅学金, 强洪夫, 杨月诚 2007 力学进展 37 375]

    [29]

    Morris J P, Fox P J, Zhu Y 1997 J. Comput. Phys. 136 214

    [30]

    Fulk D A, Quinn D W 1996 J. Comput. Phys. 126 165

  • [1]

    Lucy L B 1977 Astron. J. 82 1013

    [2]

    Gingold R A, Monaghan J J 1977 Mon. Not. R. Astron. Soc. 181 375

    [3]

    Liu G R, Liu M B 2003 Smoothed particle hydrodynamics: a meshfree particle method (Singapore: World Scientific) p36

    [4]

    Liu M B, Liu G R, Zong Z 2008 Int. J. Comput. Methods 5 135

    [5]

    Monaghan J J 2005 Rep. Prog. Phys. 68 1703

    [6]

    Liu M B, Chang J Z 2010 Acta Phys. Sin. 59 7556 (in Chinese) [刘谋斌, 常建忠 2010 物理学报 59 7556]

    [7]

    Swegle J W, Hicks D L, Attaway S W 1995 J. Comput. Phys. 116 123

    [8]

    Dyka C T, Ingel R P 1995 Comput. Struct. 57 573

    [9]

    Zhang J Z, Zheng J, Yu K P, Wei Y J 2010 Eng. Mech. 27 65 (in Chinese) [张嘉钟, 郑俊, 于开平, 魏英杰 2010 工程力学 27 65]

    [10]

    Zheng J 2010 Ph. D. Dissertation (Harbin: Harbin Institute of Technoloty) (in Chinese) [郑俊 2010 博士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [11]

    Morris J P 1995 Pulb. Astron. Soc. Aust. 13 97

    [12]

    Dyka C T, Randles P W, Ingel R P 1997 Int. J. Num. Methods Eng. 40 2325

    [13]

    Randles P W, Libersky L D 2000 Int. J. Num. Methods Eng. 48 1445

    [14]

    Morris J P 1996 Ph.D. Dissertation (Melbourne: Monash University)

    [15]

    Johnson G R, Stryk R A, Beissel S R 1996 Comput. Methods Appl. Mech. Eng. 139 347

    [16]

    Johnson G R, Beissel S R 1996 Int. J. Num. Methods Eng. 39 2725

    [17]

    Hicks D L, Liebrock L M 1999 Comput. Math. Appl. 38 1

    [18]

    Belytschko T, Guo Y, Liu W K, Xiao S P 2000 Int. J. Num. Methods Eng. 48 1359

    [19]

    Zhang G M, Wang X J, Hu X Z, Zhou Z 2003 Explosion and Shock Waves 23 219 (in Chinese) [张刚明, 王肖钧, 胡秀章, 周钟 2003 爆炸与冲击 23 219]

    [20]

    Hicks D L, Swegle J W, Attaway S W 1997 Appl. Math. Comput. 85 209

    [21]

    Wen Y, Hicks D L, Swegle J W 1994 Sandia Report SAND94-1932

    [22]

    Chen J K, Beraun J E, Jih C J 1999 Comput. Mech. 23 279

    [23]

    Monaghan J J 2000 J. Comput. Phys. 159 290

    [24]

    Gray J P, Monaghan J J, Swift R P 2001 Comput. Methods Appl. Mech. Eng. 190 6641

    [25]

    Jia B, Ma Z T, Zhang W, Pang B J 2010 J. of Harbin Institute of Technology 42 1369 (in Chinese) [贾斌, 马志涛, 张伟, 庞宝君 2010 哈尔滨工业大学学报 42 1369]

    [26]

    Liu W K, Jun S, Zhang Y F 1995 Int. J. Num. Methods in Fluids 20 1081

    [27]

    Dilts G A 1999 Int. J. Num. Methods Eng. 44 1115

    [28]

    Fu X J, Qiang H F, Yang Y C 2007 Advances in Mech. 37 375 (in Chinese) [傅学金, 强洪夫, 杨月诚 2007 力学进展 37 375]

    [29]

    Morris J P, Fox P J, Zhu Y 1997 J. Comput. Phys. 136 214

    [30]

    Fulk D A, Quinn D W 1996 J. Comput. Phys. 126 165

  • [1] 刘谋斌, 常建忠. 光滑粒子动力学方法中粒子分布与数值稳定性分析. 物理学报, 2010, 59(6): 3654-3662. doi: 10.7498/aps.59.3654
    [2] 蒋涛, 欧阳洁, 赵晓凯, 任金莲. 黏性液滴变形过程的核梯度修正光滑粒子动力学模拟. 物理学报, 2011, 60(5): 054701. doi: 10.7498/aps.60.054701
    [3] 封国林, 董文杰, 李建平, 丑纪范. 自忆模式中差分格式的稳定性研究. 物理学报, 2004, 53(7): 2389-2395. doi: 10.7498/aps.53.2389
    [4] 陈俊, 史琳, 王楠, 毕胜山. 基于分子动力学模拟流体输运性质的稳定性分析. 物理学报, 2011, 60(12): 126601. doi: 10.7498/aps.60.126601
    [5] 罗晓华, 何为, 吴木营, 罗诗裕. 准周期激励与应变超晶格的动力学稳定性. 物理学报, 2013, 62(24): 247301. doi: 10.7498/aps.62.247301
    [6] 时培明, 蒋金水, 刘彬. 耦合相对转动非线性动力系统的稳定性与近似解. 物理学报, 2009, 58(4): 2147-2154. doi: 10.7498/aps.58.2147
    [7] 马理强, 常建忠, 刘汉涛, 刘谋斌. 液滴溅落问题的光滑粒子动力学模拟. 物理学报, 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [8] 时培明, 刘 彬, 刘 爽. 一类谐波激励相对转动非线性动力系统的稳定性与近似解. 物理学报, 2008, 57(8): 4675-4684. doi: 10.7498/aps.57.4675
    [9] 刘浩然, 朱占龙, 时培明. 一类相对转动时滞非线性动力系统的稳定性分析. 物理学报, 2010, 59(10): 6770-6777. doi: 10.7498/aps.59.6770
    [10] 王 坤. 二端面转轴相对转动非线性动力学系统的稳定性与近似解. 物理学报, 2005, 54(12): 5530-5533. doi: 10.7498/aps.54.5530
    [11] 孟 宗, 刘 彬. 相对转动非线性动力学方程的稳定性及在一类非线性弹性系数下的解. 物理学报, 2007, 56(11): 6194-6198. doi: 10.7498/aps.56.6194
    [12] 孟 宗, 刘 彬. 一类非线性相对转动动力系统的平衡稳定性及组合谐波近似解. 物理学报, 2008, 57(3): 1329-1334. doi: 10.7498/aps.57.1329
    [13] 薛卫东, 朱正和. CUO基态分子热力学稳定性研究. 物理学报, 2003, 52(12): 2965-2969. doi: 10.7498/aps.52.2965
    [14] 马理强, 刘谋斌, 常建忠, 苏铁熊, 刘汉涛. 液滴冲击液膜问题的光滑粒子动力学模拟. 物理学报, 2012, 61(24): 244701. doi: 10.7498/aps.61.244701
    [15] 苏铁熊, 马理强, 刘谋斌, 常建忠. 基于光滑粒子动力学方法的液滴冲击固壁面问题数值模拟. 物理学报, 2013, 62(6): 064702. doi: 10.7498/aps.62.064702
    [16] 蒋涛, 陆林广, 陆伟刚. 等直径微液滴碰撞过程的改进光滑粒子动力学模拟. 物理学报, 2013, 62(22): 224701. doi: 10.7498/aps.62.224701
    [17] 蒋涛, 黄金晶, 陆林广, 任金莲. 非线性薛定谔方程的高阶分裂改进光滑粒子动力学算法. 物理学报, 2019, 68(9): 090203. doi: 10.7498/aps.68.20190169
    [18] 马理强, 苏铁熊, 刘汉涛, 孟青. 微液滴振荡过程的光滑粒子动力学方法数值模拟. 物理学报, 2015, 64(13): 134702. doi: 10.7498/aps.64.134702
    [19] 张善文, 巴音贺希格. 衍射光栅积分理论中核函数的简化及其特性分析. 物理学报, 2008, 57(6): 3486-3493. doi: 10.7498/aps.57.3486
    [20] 王 坤. 相对转动动力学方程的稳定性及在一类黏弹性系数下的解. 物理学报, 2005, 54(9): 3987-3991. doi: 10.7498/aps.54.3987
  • 引用本文:
    Citation:
计量
  • 文章访问数:  5364
  • PDF下载量:  1777
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-16
  • 修回日期:  2012-06-12
  • 刊出日期:  2012-11-05

光滑粒子动力学SPH方法应力不稳定性的一种改进方案

  • 1. 中国科学院力学研究所, 水动力学与海洋工程重点实验室, 北京 100190

摘要: 光滑粒子动力学方法是一种拉格朗日型无网格粒子方法, 在模拟大变形和自由表面流方面具有特殊的优势, 已经在工程和科学领域得到了广泛的应用. 然而, 长期以来, 传统光滑粒子动力学方法一直受到应力不稳定性的困扰, 从而限制了它的进一步发展和应用. 应力不稳定性的根本原因在于应力状态与核函数的不匹配:负压状态下粒子间产生吸引力, 吸引力随着粒子间距的减小而增大, 导致拉伸不稳定性;正压状态下粒子间产生排斥力, 排斥力随着粒子间距的减小而先增大后减小, 导致压缩不稳定性. 本文通过改进光滑粒子动力学方法的核函数和离散格式, 使得无论在正压还是负压状态下粒子间的作用力恒为排斥力, 且排斥力随着粒子间距的减小而增大, 从而防止粒子聚集等现象, 解决应力不稳定问题. 分别使用改进前后的光滑粒子动力学方法模拟两个典型的应力不稳定算例, 结果表明本文的改进方法能够有效地消除应力不稳定性.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回