搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

棒-板电极直流负电晕放电特里切尔脉冲的微观过程分析

伍飞飞 廖瑞金 杨丽君 刘兴华 汪可 周之

棒-板电极直流负电晕放电特里切尔脉冲的微观过程分析

伍飞飞, 廖瑞金, 杨丽君, 刘兴华, 汪可, 周之
PDF
导出引用
导出核心图
  • 本文基于流体动力学理论改进出一种新的棒-板电极负电晕放电混合数值模型, 模型中加入了27种主要碰撞反应, 并考虑了光电离和二次电子发射过程. 对棒-板间距3.3 mm, 施加电压-5.0 kV情况下进行数值计算, 得到负电晕放电的特里切尔脉冲. 重点分析了单个特里切尔脉冲持续过程中5个关键时刻的微观特征量发展规律, 丰富并量化描述了特里切尔脉冲的微观过程, 主要结论如下: 随着放电时间的发展, 电场集中分布区域向阳极移动且幅值变小, 这对电子崩的发展非常不利. 大部分放电区域都是电中性的, 只有在阴极鞘和阳极鞘附近有带正电的等离子体特性, 带负电的离子云随着放电时间的发展缓慢向阳极发散式移动. 整个特里切尔脉冲持续过程中, 阴极鞘内电子密度几乎为0; 特里切尔脉冲前期, 阴极鞘附近电子密度迅速增加至最大值并保持基本不变; 随着放电时间的增加, 放电间隙内电子密度整体增加, 并且向阳极发展. 在特里切尔脉冲后期, 电子的产生主要来自于N2和O2的碰撞电离, 电子的消失则主要由N2+的复合决定, O4+和O2-分别是数量最多的正离子和负离子.
    • 基金项目: 国家重点基础研究发展计划(973计划)(批准号: 2011CB209401)和国家自然科学基金创新研究群体科学基金(批准号: 51021005)资助的课题.
    [1]

    Liu Z Y 2005 Ultra-hig grid (Beijing: China Economic Publishig) (in Chinese) [刘振亚 2005 特高压电网(北京: 中国经济出版社)]

    [2]

    Shu Y B, Hu Y 2007 Proceedings of the CSEE 27 1 (in Chinese) [舒印彪, 胡毅 2007 中国电机工程学报 27 1]

    [3]

    Zheng Y S, He J L, Zhang B 2011 High Voltage Engineering 37 752 (in Chinese) [郑跃胜, 何金良, 张波 2011 高电压技术 37 752]

    [4]

    In L, WU B, Zhang P, Wang Y Q 2004 Chin. Phys. Lett. 21 1993

    [5]

    Stoffels E, Flikweert A J, Stoffels W W and Kroesen G M W 2002 Plasma Sources Sci. Technol. 11 383

    [6]

    G W Trichel 1938 Phys. Rev. 54 1078

    [7]

    Zentner R 1970 Z. Angew. Physik 29 294

    [8]

    Soria H C, Pontiga F, Castellanos A 2007 J. Phys. D: Appl. Phys. 40 4552

    [9]

    Loeb L B, Kip A F, Hudson G G 1941 Phys. Rev. 60 714

    [10]

    Loeb L B 1965 Electrical coronas: their basic physical mechanisms (Berkeley: University of California Press) p226-230

    [11]

    Lama W L, Gallo C F 1974 J. Appl. Phys. 45 103-13

    [12]

    Michael A L, Allan J L 2007 Plasma discharge principle and materials processing (Beijing: Science Press) (in Chinese) [迈克尔 A 力伯曼,阿伦 J 里登伯格 2007等离子体放电原理与材料处理(北京: 科学出版社)]

    [13]

    Kekez M M, Savic P, Lougheed G D 1982 J. Phys. D: Appl. Phys. 15 1963

    [14]

    Tran T N, Golosnov I O, Levin P L, Georghiou G E 2009 IEEE Conf. on Electrical Insulation and Dielectric Phenomena, CEIDP '09 (Virginia Beach, VA, 18-21 October 2009) p 592-5

    [15]

    Agostino R D, Favia P, Oehr C, Wertheimer M R 2005 Plasma Processes and Polymers 2 7

    [16]

    Nahomy J, Ferreira C M, Gordiets B, Pagnon D, Touzeau M,Vialle M, 2010 J. Phys. D: Appl. Phys. 107 093304

    [17]

    Pancheshnyi S V, Starikovskii A Y 2003 J. Phys. D: Appl. Phys. 36 268

    [18]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722

    [19]

    Zheleznyak M D, Mnattskanyan A K 1977 Zhurnal Tekhnicheskoi Fiziki 47 2497

    [20]

    Yu V S, Larsson A, Gubanski S M, Akyuz M 2001 J. Phys. D: Appl. Phys. 34 614

    [21]

    Liu X H, He W, Yang F, Wang H Y, Liao R J, Xiao H G 2012 Chin. Phys. B 21 75201

    [22]

    Philip D N, Janzen A R, Aziz R A 1972 J. Chem. Phys. 57 1100

    [23]

    Brokaw R S 1969 Ind. Eng. Chem. Process Des. 8 240

    [24]

    Bird R B, Stewart W E, Lightfoot E N 1960 Transport Phenomena (Madison: Madison Press)

    [25]

    Farouk T, Farouk B, Gutsol A, Fridman A 2008 Plasma Sources Sci. Technol. 17 035015

    [26]

    Curtiss C F, Bird R B 1999 Ind. Eng. Chem. Res. 38 2515

    [27]

    Xu X J, Zhu D C 1996 Air discharge physical (Shanghai: Fudan University Press) (in Chinese) [徐学基, 诸定昌 1996 空气放电物理(上海: 复旦大学出版社)]

    [28]

    Liu X H, He W, Yang F, Xiao H G, Ma J 2011 High Voltage Engineering 37 1614 (in Chinese) [刘兴华, 何为, 杨帆, 肖汉光, 马俊 2011 高电压技术 37 1614]

    [29]

    Du H L, He L M, Lan Y u, Wang F 2011 Acta Phys. Sin. 60 115201 (in Chinese) [杜宏亮, 何立明, 兰宇丹, 王峰 2011 物理学报 60 115201]

    [30]

    He W, Liu X H, Yang F, Wang H u, Liao R J, Xiao H G 2012 Jpn. J. Appl. Phys. 51 026001

    [31]

    Tran T N, Golosnoy I O, Lewin P L, Georghiou G E 2011 J. Phys. D: Appl. Phys. 44 015203

    [32]

    Yu D R, Qing S W, Yan G J, Duan P 2011 Chin. Phys. B 20 65204

    [33]

    Wang P X, Fan F G, Zirilli F, Chen J H 2012 IEEE T. Plasma Sci. 40 421

    [34]

    Antao D S, Staack D A, Fridman A, Farouk B 2009 Plasma Sources Sci. Technol. 18 035016

    [35]

    Mahadev S, Raja L L 2010 J. Appl. Phys. 107 093304

  • [1]

    Liu Z Y 2005 Ultra-hig grid (Beijing: China Economic Publishig) (in Chinese) [刘振亚 2005 特高压电网(北京: 中国经济出版社)]

    [2]

    Shu Y B, Hu Y 2007 Proceedings of the CSEE 27 1 (in Chinese) [舒印彪, 胡毅 2007 中国电机工程学报 27 1]

    [3]

    Zheng Y S, He J L, Zhang B 2011 High Voltage Engineering 37 752 (in Chinese) [郑跃胜, 何金良, 张波 2011 高电压技术 37 752]

    [4]

    In L, WU B, Zhang P, Wang Y Q 2004 Chin. Phys. Lett. 21 1993

    [5]

    Stoffels E, Flikweert A J, Stoffels W W and Kroesen G M W 2002 Plasma Sources Sci. Technol. 11 383

    [6]

    G W Trichel 1938 Phys. Rev. 54 1078

    [7]

    Zentner R 1970 Z. Angew. Physik 29 294

    [8]

    Soria H C, Pontiga F, Castellanos A 2007 J. Phys. D: Appl. Phys. 40 4552

    [9]

    Loeb L B, Kip A F, Hudson G G 1941 Phys. Rev. 60 714

    [10]

    Loeb L B 1965 Electrical coronas: their basic physical mechanisms (Berkeley: University of California Press) p226-230

    [11]

    Lama W L, Gallo C F 1974 J. Appl. Phys. 45 103-13

    [12]

    Michael A L, Allan J L 2007 Plasma discharge principle and materials processing (Beijing: Science Press) (in Chinese) [迈克尔 A 力伯曼,阿伦 J 里登伯格 2007等离子体放电原理与材料处理(北京: 科学出版社)]

    [13]

    Kekez M M, Savic P, Lougheed G D 1982 J. Phys. D: Appl. Phys. 15 1963

    [14]

    Tran T N, Golosnov I O, Levin P L, Georghiou G E 2009 IEEE Conf. on Electrical Insulation and Dielectric Phenomena, CEIDP '09 (Virginia Beach, VA, 18-21 October 2009) p 592-5

    [15]

    Agostino R D, Favia P, Oehr C, Wertheimer M R 2005 Plasma Processes and Polymers 2 7

    [16]

    Nahomy J, Ferreira C M, Gordiets B, Pagnon D, Touzeau M,Vialle M, 2010 J. Phys. D: Appl. Phys. 107 093304

    [17]

    Pancheshnyi S V, Starikovskii A Y 2003 J. Phys. D: Appl. Phys. 36 268

    [18]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722

    [19]

    Zheleznyak M D, Mnattskanyan A K 1977 Zhurnal Tekhnicheskoi Fiziki 47 2497

    [20]

    Yu V S, Larsson A, Gubanski S M, Akyuz M 2001 J. Phys. D: Appl. Phys. 34 614

    [21]

    Liu X H, He W, Yang F, Wang H Y, Liao R J, Xiao H G 2012 Chin. Phys. B 21 75201

    [22]

    Philip D N, Janzen A R, Aziz R A 1972 J. Chem. Phys. 57 1100

    [23]

    Brokaw R S 1969 Ind. Eng. Chem. Process Des. 8 240

    [24]

    Bird R B, Stewart W E, Lightfoot E N 1960 Transport Phenomena (Madison: Madison Press)

    [25]

    Farouk T, Farouk B, Gutsol A, Fridman A 2008 Plasma Sources Sci. Technol. 17 035015

    [26]

    Curtiss C F, Bird R B 1999 Ind. Eng. Chem. Res. 38 2515

    [27]

    Xu X J, Zhu D C 1996 Air discharge physical (Shanghai: Fudan University Press) (in Chinese) [徐学基, 诸定昌 1996 空气放电物理(上海: 复旦大学出版社)]

    [28]

    Liu X H, He W, Yang F, Xiao H G, Ma J 2011 High Voltage Engineering 37 1614 (in Chinese) [刘兴华, 何为, 杨帆, 肖汉光, 马俊 2011 高电压技术 37 1614]

    [29]

    Du H L, He L M, Lan Y u, Wang F 2011 Acta Phys. Sin. 60 115201 (in Chinese) [杜宏亮, 何立明, 兰宇丹, 王峰 2011 物理学报 60 115201]

    [30]

    He W, Liu X H, Yang F, Wang H u, Liao R J, Xiao H G 2012 Jpn. J. Appl. Phys. 51 026001

    [31]

    Tran T N, Golosnoy I O, Lewin P L, Georghiou G E 2011 J. Phys. D: Appl. Phys. 44 015203

    [32]

    Yu D R, Qing S W, Yan G J, Duan P 2011 Chin. Phys. B 20 65204

    [33]

    Wang P X, Fan F G, Zirilli F, Chen J H 2012 IEEE T. Plasma Sci. 40 421

    [34]

    Antao D S, Staack D A, Fridman A, Farouk B 2009 Plasma Sources Sci. Technol. 18 035016

    [35]

    Mahadev S, Raja L L 2010 J. Appl. Phys. 107 093304

  • [1] 廖瑞金, 伍飞飞, 刘兴华, 杨帆, 杨丽君, 周之, 翟蕾. 大气压直流正电晕放电暂态空间电荷分布仿真研究. 物理学报, 2012, 61(24): 245201. doi: 10.7498/aps.61.245201
    [2] 王晶, 马瑞玲, 王龙, 孟俊敏. 采用混合模型数值模拟从深海到浅海内波的传播. 物理学报, 2012, 61(6): 064701. doi: 10.7498/aps.61.064701
    [3] 杨成, 周昕. 液态水中的多种局域结构. 物理学报, 2016, 65(17): 176501. doi: 10.7498/aps.65.176501
    [4] 罗 斌, 刘兰琴, 粟敬钦, 王文义, 景 峰, 魏晓峰. 基于混合加宽的宽带激光脉冲放大的物理模型. 物理学报, 2007, 56(11): 6749-6753. doi: 10.7498/aps.56.6749
    [5] 周东方, 余道杰, 杨建宏, 侯德亭, 夏蔚, 胡涛, 林竞羽, 饶育萍, 魏进进, 张德伟, 王利萍. 基于混合大气传输模型的单脉冲高功率微波大气击穿理论与实验研究. 物理学报, 2013, 62(1): 014207. doi: 10.7498/aps.62.014207
    [6] 吴衍青, 肖体乔. 离子振荡对低压脉冲负电性放电条件的影响. 物理学报, 2006, 55(7): 3443-3450. doi: 10.7498/aps.55.3443
    [7] 杨娟, 卞保民, 彭刚, 李振华. 随机信号双参数脉冲模型的分形特征. 物理学报, 2011, 60(1): 010508. doi: 10.7498/aps.60.010508
    [8] 林颖璐, 闫振纲, 杨娟, 王春勇, 卞保民. 噪声信号特征量分布函数相似特性的研究. 物理学报, 2012, 61(10): 100505. doi: 10.7498/aps.61.100505
    [9] 雷家荣, 袁永刚, 赵 林, 赵敏智, 崔高显. 快中子堆n,γ混合场中γ光子注量的测量研究. 物理学报, 2003, 52(1): 53-57. doi: 10.7498/aps.52.53
    [10] 濮存来, 裴文江, 王少平. 一种基于布朗粒子的混合搜索模型. 物理学报, 2010, 59(1): 103-110. doi: 10.7498/aps.59.103
    [11] 唐坤发, 胡嘉桢. 无序区域上推广混合自旋模型的严格解. 物理学报, 1988, 37(9): 1564-1568. doi: 10.7498/aps.37.1564
    [12] 范洪义, 徐之华. ─维晶格的一种混合杂质模型. 物理学报, 1994, 43(2): 253-257. doi: 10.7498/aps.43.253
    [13] 汪韧, 郭静波, 惠俊鹏, 王泽, 刘红军, 许元男, 刘韵佛. 基于卷积高斯混合模型的统计压缩感知. 物理学报, 2019, 68(18): 180701. doi: 10.7498/aps.68.20190414
    [14] 勾成俊, 杨代伦, 曾革, 罗正明. 混合笔束模型在电子剂量算法中的应用. 物理学报, 2002, 51(11): 2649-2655. doi: 10.7498/aps.51.2649
    [15] 李菊萍, 谭 磊, 臧小飞, 杨 科. 偶极旋量玻色-爱因斯坦凝聚体在外场中的自旋混合动力学. 物理学报, 2008, 57(12): 7467-7476. doi: 10.7498/aps.57.7467
    [16] 员美娟, 郑伟, 李云宝, 李钰. 单毛细管中赫切尔-巴尔克莱流体的分形分析. 物理学报, 2012, 61(16): 164701. doi: 10.7498/aps.61.164701
    [17] 杨振峰, 杨振军, 胡 巍. 超短脉冲复宗量辛格高斯光束. 物理学报, 2007, 56(2): 859-862. doi: 10.7498/aps.56.859
    [18] 苏兆锋. 脉冲硬X射线能注量测量技术. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191700
    [19] 闫振纲, 林颖璐, 杨娟, 李振华, 卞保民. 光电探测器随机噪声特征量统计分布函数. 物理学报, 2012, 61(20): 200502. doi: 10.7498/aps.61.200502
    [20] 张振霞, 王辰宇, 李强, 吴书贵. 准线性扩散系数与空间高能电子特征物理量的关系研究. 物理学报, 2014, 63(7): 079401. doi: 10.7498/aps.63.079401
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1203
  • PDF下载量:  1151
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-05
  • 修回日期:  2012-12-12
  • 刊出日期:  2013-06-05

棒-板电极直流负电晕放电特里切尔脉冲的微观过程分析

  • 1. 输配电装备及系统安全与新技术国家重点实验室(重庆大学), 重庆 400030;
  • 2. 淄博供电公司, 山东省电力集团公司, 淄博 255000
    基金项目: 

    国家重点基础研究发展计划(973计划)(批准号: 2011CB209401)和国家自然科学基金创新研究群体科学基金(批准号: 51021005)资助的课题.

摘要: 本文基于流体动力学理论改进出一种新的棒-板电极负电晕放电混合数值模型, 模型中加入了27种主要碰撞反应, 并考虑了光电离和二次电子发射过程. 对棒-板间距3.3 mm, 施加电压-5.0 kV情况下进行数值计算, 得到负电晕放电的特里切尔脉冲. 重点分析了单个特里切尔脉冲持续过程中5个关键时刻的微观特征量发展规律, 丰富并量化描述了特里切尔脉冲的微观过程, 主要结论如下: 随着放电时间的发展, 电场集中分布区域向阳极移动且幅值变小, 这对电子崩的发展非常不利. 大部分放电区域都是电中性的, 只有在阴极鞘和阳极鞘附近有带正电的等离子体特性, 带负电的离子云随着放电时间的发展缓慢向阳极发散式移动. 整个特里切尔脉冲持续过程中, 阴极鞘内电子密度几乎为0; 特里切尔脉冲前期, 阴极鞘附近电子密度迅速增加至最大值并保持基本不变; 随着放电时间的增加, 放电间隙内电子密度整体增加, 并且向阳极发展. 在特里切尔脉冲后期, 电子的产生主要来自于N2和O2的碰撞电离, 电子的消失则主要由N2+的复合决定, O4+和O2-分别是数量最多的正离子和负离子.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回