搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空发动机喷流起电机理建模与试验研究

朱利 刘尚合 郑会志 魏明 胡小锋 索罗金·安德烈

引用本文:
Citation:

航空发动机喷流起电机理建模与试验研究

朱利, 刘尚合, 郑会志, 魏明, 胡小锋, 索罗金·安德烈

Modeling and experimental study of the mechanism of electrification from aero-engine jet

Zhu Li, Liu Shang-He, Zheng Hui-Zhi, Wei Ming, Hu Xiao-Feng, Sorokin Andrey
PDF
导出引用
  • 以研究航空发动机喷流起电的机理以及喷流起电对飞行器整体带电特性的影响为目的, 对起电机理进行了建模和实验验证. 首先以流体运动方程为基础, 建立了航空发动机带电粒子浓度的动态仿真模型, 仿真得到发动机燃烧过程中的各类粒子浓度变化情况. 其次, 设计了用于发动机喷流起电探测的静电感应传感器, 对装配涡扇发动机的某型飞行器进行了地面试验测试, 得到了发动机启动、稳定运行、加速、减速、停止等状态的动态电位. 仿真及实验结果详细地描述了发动机喷流起电的机理, 以及喷流起电会使飞行器带负电的结论, 为进一步分析飞行器飞行过程中整体带电特性提供了指导.
    To investigate the mechanism of electrification from aero-engine jet and the electrification effect on the overall charging characteristics of vehicle, a simulation model of concentration of charged particles in aero-engine is build based on the equations of fluid motion. And concentration changes of various particles are simulated. To verify the simulation result, a special electrostatic induction sensor for detecting the electrification of engine jet is designed, according to the principle of the Faraday cup, to measure the dynamic potential when the turbofan engine starts, operates steadily, accelerates, decelerates and stops. The simulation and experimental results show that the aircraft is negatively charged by the electrification from aero-engine jet and the mechanism of electrification from aero-engine jet is described specifically. The research may provide a guidance to the further study on analyzing the overall charging characteristics of vehicle during the flight.
    • 基金项目: 国家自然科学基金(批准号: 61172035)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61172035).
    [1]

    Cao H F, Liu S H, Sun Y W, Yuan Q Y 2013 Acta Phys. Sin. 62 149402 (in Chinese) [曹鹤飞, 刘尚合, 孙永卫, 原青云 2013 物理学报 62 149402]

    [2]

    Cao H F, Liu S H, Sun Y W, Yuan Q Y 2013 Acta Phys. Sin. 62 119401 (in Chinese) [曹鹤飞, 刘尚合, 孙永卫, 原青云 2013 物理学报 62 119401]

    [3]

    Huang J G, Han J W 2010 Acta Phys. Sin. 59 2907 (in Chinese) [黄建国, 韩建伟 2010 物理学报 59 2907]

    [4]

    Tanner R L 1953 Radio Interference from Corona Discharges (California: Stanford Electronics Labs) pp3–23

    [5]

    Tanner R L, Nanevicz J E 1961 Precipitation Charging and Corona-generated Interference in Aircraft (California: Staford Electronics Labs) pp7–32

    [6]

    Tanner R L, Nanevicz J E 1964 P. IEEE 52 44

    [7]

    Nanevicz J E 1982 IEEE T. Electromagn. C. 2 203

    [8]

    Trichel G W 1938 Phys. Rev. 54 1078

    [9]

    Li Y L 2000 M. S. Dissertation (Beijing: Beijing Institute of Technology) (in Chinese) [李银林 2000 硕士学位论文 (北京: 北京理工大学)]

    [10]

    Nanevicz J E 1975 Conference on Lightning and Static Electricity (London: Royal Aeronautical Soc) p14

    [11]

    Yi M, Wang C 2007 High Voltage Eng. 33 115 (in Chinese) [易鸣, 王春 2007 高电压技术 33 115]

    [12]

    Trinks H, Haseborg J L T 1982 IEEE Trans. Aero. Elect. Syst. 3 268

    [13]

    Penner J, Lister D, Griggs D 1999 Aviation and the Global Atmosphere (Cambridge: The Press Syndicate of the University of Cambridge) pp15–29

    [14]

    Xu M Y, Zhang J P, Mi J C, Nathan G J, Kalt P A M 2013 Chin. Phys. B 22 034701

    [15]

    Vatazhin A B, Starik A M, Kholshchevnikova E K 2004 Fluid Dynamics 39 384

    [16]

    Guo H, Tang P 2013 Chin. Phys. B 22 054204

    [17]

    Li Y X, Chen X, Cui Z Z 2009 Trans. Beijing I. Technol. 27 1 (in Chinese) [李彦旭, 陈曦, 崔占忠 2009 北京理工大学学报 27 1]

    [18]

    Li Y H, Zuo H F, Wen Z H 2009 Acta Aeronaut. Et Astronaut. Sin. 30 604 (in Chinese) [李耀华, 左洪福, 文振华 2009 航空学报 30 604]

    [19]

    Powrie H, Smiths Aerosp, Hampshire, Novis A 2006 Aerospace Conference (Big Sky, MT: IEEE) p8

    [20]

    Gerhardt P, Homann K H 1990 Berichte der Bunsengesellschaft fr Physikalische Chemie 94 1086

    [21]

    Guo J, Goodings J M 2000 Chem. Phys. Lett. 329 393

    [22]

    Mätzing H 1991 Adv. Chem. Phys. 80 315

    [23]

    Sorokin A, Vancassel X, Mirabel P 2003 Atmos. Chem. Phys. 3 325

    [24]

    Liu S H, Wei G H, Liu Z C, Wu Z C, Li H J 1999 Electrostatic Theory and Protection (Beijing: Weapon Industry Press) p365 (in Chinese) [刘尚合, 魏光辉, 刘直承, 武占成, 李宏建 1999 静电理论与防护(北京: 兵器工业出版社)第365页]

    [25]

    Liu S H 1990 P. R. C. Patent CN90203259.3 (in Chinese) [刘尚合 1990 专利 CN90203259.3]

  • [1]

    Cao H F, Liu S H, Sun Y W, Yuan Q Y 2013 Acta Phys. Sin. 62 149402 (in Chinese) [曹鹤飞, 刘尚合, 孙永卫, 原青云 2013 物理学报 62 149402]

    [2]

    Cao H F, Liu S H, Sun Y W, Yuan Q Y 2013 Acta Phys. Sin. 62 119401 (in Chinese) [曹鹤飞, 刘尚合, 孙永卫, 原青云 2013 物理学报 62 119401]

    [3]

    Huang J G, Han J W 2010 Acta Phys. Sin. 59 2907 (in Chinese) [黄建国, 韩建伟 2010 物理学报 59 2907]

    [4]

    Tanner R L 1953 Radio Interference from Corona Discharges (California: Stanford Electronics Labs) pp3–23

    [5]

    Tanner R L, Nanevicz J E 1961 Precipitation Charging and Corona-generated Interference in Aircraft (California: Staford Electronics Labs) pp7–32

    [6]

    Tanner R L, Nanevicz J E 1964 P. IEEE 52 44

    [7]

    Nanevicz J E 1982 IEEE T. Electromagn. C. 2 203

    [8]

    Trichel G W 1938 Phys. Rev. 54 1078

    [9]

    Li Y L 2000 M. S. Dissertation (Beijing: Beijing Institute of Technology) (in Chinese) [李银林 2000 硕士学位论文 (北京: 北京理工大学)]

    [10]

    Nanevicz J E 1975 Conference on Lightning and Static Electricity (London: Royal Aeronautical Soc) p14

    [11]

    Yi M, Wang C 2007 High Voltage Eng. 33 115 (in Chinese) [易鸣, 王春 2007 高电压技术 33 115]

    [12]

    Trinks H, Haseborg J L T 1982 IEEE Trans. Aero. Elect. Syst. 3 268

    [13]

    Penner J, Lister D, Griggs D 1999 Aviation and the Global Atmosphere (Cambridge: The Press Syndicate of the University of Cambridge) pp15–29

    [14]

    Xu M Y, Zhang J P, Mi J C, Nathan G J, Kalt P A M 2013 Chin. Phys. B 22 034701

    [15]

    Vatazhin A B, Starik A M, Kholshchevnikova E K 2004 Fluid Dynamics 39 384

    [16]

    Guo H, Tang P 2013 Chin. Phys. B 22 054204

    [17]

    Li Y X, Chen X, Cui Z Z 2009 Trans. Beijing I. Technol. 27 1 (in Chinese) [李彦旭, 陈曦, 崔占忠 2009 北京理工大学学报 27 1]

    [18]

    Li Y H, Zuo H F, Wen Z H 2009 Acta Aeronaut. Et Astronaut. Sin. 30 604 (in Chinese) [李耀华, 左洪福, 文振华 2009 航空学报 30 604]

    [19]

    Powrie H, Smiths Aerosp, Hampshire, Novis A 2006 Aerospace Conference (Big Sky, MT: IEEE) p8

    [20]

    Gerhardt P, Homann K H 1990 Berichte der Bunsengesellschaft fr Physikalische Chemie 94 1086

    [21]

    Guo J, Goodings J M 2000 Chem. Phys. Lett. 329 393

    [22]

    Mätzing H 1991 Adv. Chem. Phys. 80 315

    [23]

    Sorokin A, Vancassel X, Mirabel P 2003 Atmos. Chem. Phys. 3 325

    [24]

    Liu S H, Wei G H, Liu Z C, Wu Z C, Li H J 1999 Electrostatic Theory and Protection (Beijing: Weapon Industry Press) p365 (in Chinese) [刘尚合, 魏光辉, 刘直承, 武占成, 李宏建 1999 静电理论与防护(北京: 兵器工业出版社)第365页]

    [25]

    Liu S H 1990 P. R. C. Patent CN90203259.3 (in Chinese) [刘尚合 1990 专利 CN90203259.3]

  • [1] 白宇, 张振方, 杨海滨, 蔡力, 郁殿龙. 基于非对称吸声器的发动机声学超表面声衬. 物理学报, 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [2] 周子童, 闫韶华, 赵巍胜, 冷群文. 隧穿磁阻传感器研究进展. 物理学报, 2022, 71(5): 058504. doi: 10.7498/aps.71.20211883
    [3] 张宇琦, 王俊杰, 吕子玉, 韩素婷. 应用于感存算一体化系统的多模调控忆阻器. 物理学报, 2022, 71(14): 148502. doi: 10.7498/aps.71.20220226
    [4] 张嘉伟, 姚鸿博, 张远征, 蒋伟博, 吴永辉, 张亚菊, 敖天勇, 郑海务. 通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用. 物理学报, 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632
    [5] 王坤, 段高燕, 郎佩琳, 赵玉芳, 刘尖斌, 宋钢. 基于银纳米链的马赫-曾德干涉仪结构的生物传感器. 物理学报, 2022, 71(1): 017301. doi: 10.7498/aps.71.20211420
    [6] 丁子平, 廖健飞, 曾泽楷. 基于表面等离子体共振的新型超宽带微结构光纤传感器研究. 物理学报, 2021, 70(7): 074207. doi: 10.7498/aps.70.20201477
    [7] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强. 双频带太赫兹超材料吸波体传感器传感特性. 物理学报, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [8] 李胜优, 刘镓榕, 文豪, 刘向阳, 郭文熹. 蚕丝基可穿戴传感器的研究进展. 物理学报, 2020, 69(17): 178703. doi: 10.7498/aps.69.20200818
    [9] 刘志福, 李培, 程铁栋, 黄文. 铁掺杂多孔氧化铟的NO2传感特性. 物理学报, 2020, 69(24): 248101. doi: 10.7498/aps.69.20200956
    [10] 吴金根, 高翔宇, 陈建国, 王春明, 张树君, 董蜀湘. 高温压电材料、器件与应用. 物理学报, 2018, 67(20): 207701. doi: 10.7498/aps.67.20181091
    [11] 武佩, 胡潇, 张健, 孙连峰. 硅基底石墨烯器件的现状及发展趋势. 物理学报, 2017, 66(21): 218102. doi: 10.7498/aps.66.218102
    [12] 王家璐, 杜木清, 张伶莉, 刘永军, 孙伟民. 基于不同液晶填充光子晶体光纤传输特性的研究. 物理学报, 2015, 64(12): 120702. doi: 10.7498/aps.64.120702
    [13] 孙杰, 杨剑锋, 闫肃, 杨晶晶, 黄铭. 等离子体辅助平板波导的传输特性及应用研究. 物理学报, 2015, 64(7): 078402. doi: 10.7498/aps.64.078402
    [14] 罗雪雪, 陈家璧, 胡金兵, 梁斌明, 蒋强. 基于双面金属包覆光波导的传感器温度特性研究及实验验证. 物理学报, 2015, 64(23): 234208. doi: 10.7498/aps.64.234208
    [15] 廖文英, 范万德, 李海鹏, 隋佳男, 曹学伟. 准晶体结构光纤表面等离子体共振传感器特性研究. 物理学报, 2015, 64(6): 064213. doi: 10.7498/aps.64.064213
    [16] 陈炳章, 易航, 杨金戈, 迟子惠, 荣健, 胡兵, 蒋华北. 光声内窥镜系统在人体直肠癌离体组织中的实验研究. 物理学报, 2014, 63(8): 084204. doi: 10.7498/aps.63.084204
    [17] 孔延梅, 高超群, 景玉鹏, 陈大鹏. 基于光子晶体分光的气敏传感器研究. 物理学报, 2011, 60(5): 054215. doi: 10.7498/aps.60.054215
    [18] 黄覃, 冷逢春, 梁文耀, 董建文, 汪河洲. 光子晶体的相位特性在高灵敏温度传感器中的应用. 物理学报, 2010, 59(6): 4014-4017. doi: 10.7498/aps.59.4014
    [19] 李政颖, 王洪海, 姜宁, 程松林, 赵磊, 余鑫. 光纤气体传感器解调方法的研究. 物理学报, 2009, 58(6): 3821-3826. doi: 10.7498/aps.58.3821
    [20] 郭文刚, 杨秀峰, 罗绍均, 李勇男, 涂成厚, 吕福云, 王宏杰, 李恩邦, 吕 超. 基于激光瞬态特性的气体浓度光纤传感器. 物理学报, 2007, 56(1): 308-312. doi: 10.7498/aps.56.308
计量
  • 文章访问数:  5092
  • PDF下载量:  567
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-06
  • 修回日期:  2013-07-26
  • 刊出日期:  2013-11-05

/

返回文章
返回