搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于试验粒子模拟的电离层人工调制激发的极低频和甚低频波对磁层高能电子的散射效应

常珊珊 倪彬彬 赵正予 汪枫 李金星 赵晶晶 顾旭东 周晨

基于试验粒子模拟的电离层人工调制激发的极低频和甚低频波对磁层高能电子的散射效应

常珊珊, 倪彬彬, 赵正予, 汪枫, 李金星, 赵晶晶, 顾旭东, 周晨
PDF
导出引用
导出核心图
  • 电离层调制加热能够有效激发极低频和甚低频(ELF/VLF)波,其中向上传播进入磁层的ELF/VLF 波能够与高能电子发生共振相互作用,具有人工沉降高能电子、消除辐射带等潜在实际用途. 本文综合运用射线追踪和试验粒子方法模拟电离层人工激发的单频ELF/VLF波在电离层和磁层的传播,以及在外辐射带层与高能电子的共振相互作用过程,通过投掷角和能量散射系数评估人工ELF/VLF波对磁层高能电子的共振散射效应. 研究表明,电离层人工ELF/VLF波传播到磁层后呈现高倾斜性,传播所能跨域的空间范围主要取决于加热的纬度位置和调制频率. 在内辐射带,与~100 keV到几个MeV 高能电子发生一阶共振相互作用的为>10 kHz的VLF波段;在外辐射带,为几百Hz到1 kHz的ELF波段. 对于L=4.5的外辐射带,试验粒子模拟结果显示,单个粒子在人工ELF波作用下投掷角和能量(α,E)的改变具有随机性,而所有试验粒子平均化的Δα2 和 ΔE2 随时间呈现出近似线性的增大,说明波粒共振散射过程体现出整体性. 基于试验粒子模拟得到的共振散射系数表明,幅度为10 pT的人工ELF波可在外辐射带的磁赤道局地对1 MeV电子产生较强的投掷角散射效应,进而影响高能电子的损失、沉降等动力学过程. 当人工ELF/VLF波在传播过程中变得高度倾斜,不仅最基本的一阶共振十分重要,高阶共振散射也具有较大效应. 这些定量分析结果表明,通过电离层加热激发人工ELF/VLF哨声波来沉降、消除辐射带高能电子具有可行性.
    • 基金项目: 国家自然科学基金(批准号:41204120)和武汉大学研究生自主科研项目(批准号:2012212020201)资助的课题.
    [1]

    Thorne R M 2010 Geophys. Res. Lett. 37 L22107

    [2]

    Abel B, Thorne R M 1998 J. Geophys. Res. 103 2385

    [3]

    Abel B, Thorne R M 1998 J. Geophys. Res. 103 2397

    [4]

    Xiao F L, He Z G, Zhang S, Su Z P, Chen L X 2011 Chin. Phys. Lett. 28 039401

    [5]

    Zhang S, Xiao F L 2010 Chin. Phys. Lett. 27 129401

    [6]

    Summers D, Ni B B, Meredith N P 2007 J. Geophys. Res. 112 A04207

    [7]

    Summers D, Ni B B, Horne R B, Thorn R M, Moldwin M B, Anderson R R 2008 J. Geophys. Res. 113 A04219

    [8]

    Qureshi M N S, Sehar S, Shah H A, Cao J B 2013 Chin. Phys. B 22 035201

    [9]

    Chen Y, Zhao D, Liu W X, Wang Y, Wan X S 2012 Chin. Phys. B 20 104103

    [10]

    Zahedian M, Maraghechi B, Rouhani M H 2012 Chin. Phys. B 21 034101

    [11]

    Jiang H, Yang X X, Lin M M, Shi Y R, Duan W S 2011 Chin. Phys. B 20 019401

    [12]

    Inan U S, Chang H C, Helliwell R A 1984 J. Geophys. Res. 89 2891

    [13]

    Lyons L R, Thorne R M, Kennel C F 1972 J. Geophys. Res. 77 3455

    [14]

    Inan U S, Bell T F, Bortnik J, Albert J M 2003 J. Geophys. Res. 108 1186

    [15]

    Albert J M 2001 J. Geophys. Res. 106 8477

    [16]

    Kulkarni P, Inan U S, Bell T F, Bortnik J 2010 J. Geophys. Res. 113 A07214

    [17]

    Bell T F, Inan U S, Platino M, Pickett J S, Kosseg P A, Kennedy E J 2004 Geophys. Res. Lett. 31 L06811

    [18]

    Platino M, Inan U S, Bell T F, Pickett J, Kennedy E J, Trotignon J G, Ranch J L, Canu P 2004 Ann. Geophys. 22 2643

    [19]

    Platino M, Inan U S, Bell T F, Parrot M, Kennedy E J 2006 Geophys. Res. Lett. 33 L16101

    [20]

    Piddyachiy D, Inan U S, Bell T F, Lehtinen N G, Parrot M 2008 J. Geophys. Res. 113 A10308

    [21]

    Gu X D, Zhao Z Y, Ni B B, Wang X, Deng F 2008 Acta Phys. Sin. 57 6673 (in Chinese) [顾旭东, 赵正予, 倪彬彬, 王翔, 邓锋 2008 物理学报 57 6673]

    [22]

    Wang P, Wang H Y, Ma Y Q, Li X Q, Lu H, Meng X C, Zhang J L, Wang H, Shi F, Xu Y B, Yu X X, Zhao X Y, Wu F 2010 Acta Phys. Sin. 60 039401 (in chinese) [王平, 王焕玉, 马宇蒨, 李新乔, 卢红, 孟祥承, 张吉龙, 王辉, 石峰, 徐岩冰, 于晓霞, 赵小芸, 吴峰 2010 物理学报 60 039401]

    [23]

    Bortnik J, Thorne R M 2010 J. Geophys. Res. 115 A07213

    [24]

    Tao X, Bortnik J 2010 Nonlin. Processes Geophys. 17 599

    [25]

    Tao X, Bortnik J, Albert J M, Liu K, Thorne R M 2011 Geophys. Res. Lett. 38 L06105

    [26]

    Walter F 1969 Ph. D. Dissertation (California: Stanford Electronics Laboratories)

    [27]

    Wang F, Zhao Z Y, Chang S S, Ni B B, Gu X D 2012 Acta Phys. Sin. 61 199401 (in Chinese) [汪枫, 赵正予, 常珊珊, 倪彬彬, 顾旭东 2012 物理学报 61 199401]

    [28]

    Inan U S, Bell T F 1977 J. Geophys. Res. 19 2819

    [29]

    Xu J S, Mo Q X 1989 Chin. J. Geophys. 32 256 (in Chinese) [徐继生, 莫起绪 1989 地球物理学报 32 256]

    [30]

    Chang S S, Zhao Z Y 2011 Chin. J. Geophys. 54 2458 (in Chinese) [常珊珊, 赵正予, 汪枫 2011 地球物理学报 54 2458]

    [31]

    Helliwell R A 1965 Whistler and Related Ionospheric Phenomena (California: Stanford University Press)

    [32]

    Shi R, Ni B B, Gu X D, Zhao Z Y, Zhou C 2012 Phys. Plasmas 19 072904

    [33]

    Tao X, Bortnik J, Albert M J, Richard T M 2012 J. Geophys. Res. 117 A10205

  • [1]

    Thorne R M 2010 Geophys. Res. Lett. 37 L22107

    [2]

    Abel B, Thorne R M 1998 J. Geophys. Res. 103 2385

    [3]

    Abel B, Thorne R M 1998 J. Geophys. Res. 103 2397

    [4]

    Xiao F L, He Z G, Zhang S, Su Z P, Chen L X 2011 Chin. Phys. Lett. 28 039401

    [5]

    Zhang S, Xiao F L 2010 Chin. Phys. Lett. 27 129401

    [6]

    Summers D, Ni B B, Meredith N P 2007 J. Geophys. Res. 112 A04207

    [7]

    Summers D, Ni B B, Horne R B, Thorn R M, Moldwin M B, Anderson R R 2008 J. Geophys. Res. 113 A04219

    [8]

    Qureshi M N S, Sehar S, Shah H A, Cao J B 2013 Chin. Phys. B 22 035201

    [9]

    Chen Y, Zhao D, Liu W X, Wang Y, Wan X S 2012 Chin. Phys. B 20 104103

    [10]

    Zahedian M, Maraghechi B, Rouhani M H 2012 Chin. Phys. B 21 034101

    [11]

    Jiang H, Yang X X, Lin M M, Shi Y R, Duan W S 2011 Chin. Phys. B 20 019401

    [12]

    Inan U S, Chang H C, Helliwell R A 1984 J. Geophys. Res. 89 2891

    [13]

    Lyons L R, Thorne R M, Kennel C F 1972 J. Geophys. Res. 77 3455

    [14]

    Inan U S, Bell T F, Bortnik J, Albert J M 2003 J. Geophys. Res. 108 1186

    [15]

    Albert J M 2001 J. Geophys. Res. 106 8477

    [16]

    Kulkarni P, Inan U S, Bell T F, Bortnik J 2010 J. Geophys. Res. 113 A07214

    [17]

    Bell T F, Inan U S, Platino M, Pickett J S, Kosseg P A, Kennedy E J 2004 Geophys. Res. Lett. 31 L06811

    [18]

    Platino M, Inan U S, Bell T F, Pickett J, Kennedy E J, Trotignon J G, Ranch J L, Canu P 2004 Ann. Geophys. 22 2643

    [19]

    Platino M, Inan U S, Bell T F, Parrot M, Kennedy E J 2006 Geophys. Res. Lett. 33 L16101

    [20]

    Piddyachiy D, Inan U S, Bell T F, Lehtinen N G, Parrot M 2008 J. Geophys. Res. 113 A10308

    [21]

    Gu X D, Zhao Z Y, Ni B B, Wang X, Deng F 2008 Acta Phys. Sin. 57 6673 (in Chinese) [顾旭东, 赵正予, 倪彬彬, 王翔, 邓锋 2008 物理学报 57 6673]

    [22]

    Wang P, Wang H Y, Ma Y Q, Li X Q, Lu H, Meng X C, Zhang J L, Wang H, Shi F, Xu Y B, Yu X X, Zhao X Y, Wu F 2010 Acta Phys. Sin. 60 039401 (in chinese) [王平, 王焕玉, 马宇蒨, 李新乔, 卢红, 孟祥承, 张吉龙, 王辉, 石峰, 徐岩冰, 于晓霞, 赵小芸, 吴峰 2010 物理学报 60 039401]

    [23]

    Bortnik J, Thorne R M 2010 J. Geophys. Res. 115 A07213

    [24]

    Tao X, Bortnik J 2010 Nonlin. Processes Geophys. 17 599

    [25]

    Tao X, Bortnik J, Albert J M, Liu K, Thorne R M 2011 Geophys. Res. Lett. 38 L06105

    [26]

    Walter F 1969 Ph. D. Dissertation (California: Stanford Electronics Laboratories)

    [27]

    Wang F, Zhao Z Y, Chang S S, Ni B B, Gu X D 2012 Acta Phys. Sin. 61 199401 (in Chinese) [汪枫, 赵正予, 常珊珊, 倪彬彬, 顾旭东 2012 物理学报 61 199401]

    [28]

    Inan U S, Bell T F 1977 J. Geophys. Res. 19 2819

    [29]

    Xu J S, Mo Q X 1989 Chin. J. Geophys. 32 256 (in Chinese) [徐继生, 莫起绪 1989 地球物理学报 32 256]

    [30]

    Chang S S, Zhao Z Y 2011 Chin. J. Geophys. 54 2458 (in Chinese) [常珊珊, 赵正予, 汪枫 2011 地球物理学报 54 2458]

    [31]

    Helliwell R A 1965 Whistler and Related Ionospheric Phenomena (California: Stanford University Press)

    [32]

    Shi R, Ni B B, Gu X D, Zhao Z Y, Zhou C 2012 Phys. Plasmas 19 072904

    [33]

    Tao X, Bortnik J, Albert M J, Richard T M 2012 J. Geophys. Res. 117 A10205

  • [1] 郝书吉, 李清亮, 杨巨涛, 吴振森. 电离层调制加热产生极低频/甚低频波定向辐射的理论分析. 物理学报, 2013, 62(22): 229402. doi: 10.7498/aps.62.229402
    [2] 杨巨涛, 李清亮, 王建国, 郝书吉, 潘威炎. 双频双波束加热电离层激发甚低频/极低频辐射理论分析. 物理学报, 2017, 66(1): 019401. doi: 10.7498/aps.66.019401
    [3] 汪枫, 赵正予, 常珊珊, 倪彬彬, 顾旭东. 低纬电离层人工调制所激发的ELF波射线追踪. 物理学报, 2012, 61(19): 199401. doi: 10.7498/aps.61.199401
    [4] 潘威炎. 关于地球曲率对低频电波电离层反射系数计算的影响. 物理学报, 1981, 30(5): 661-670. doi: 10.7498/aps.30.661
    [5] 刘超, 关燚炳, 张爱兵, 郑香脂, 孙越强. 电磁监测试验卫星朗缪尔探针电离层探测技术. 物理学报, 2016, 65(18): 189401. doi: 10.7498/aps.65.189401
    [6] 赵海生, 徐朝辉, 高敬帆, 许正文, 吴健, 冯杰, 徐彬, 薛昆, 李辉, 马征征. 电离层中性气体释放的早期试验效应研究. 物理学报, 2018, 67(1): 019401. doi: 10.7498/aps.67.20171620
    [7] M .C. KELLEY, 黄朝松, 李钧. 大气重力波产生中纬电离层不均匀体的理论. 物理学报, 1994, 43(9): 1476-1485. doi: 10.7498/aps.43.1476
    [8] 胡耀垓, 赵正予, 张援农. 电离层钡云释放早期动力学行为的数值模拟. 物理学报, 2012, 61(8): 089401. doi: 10.7498/aps.61.089401
    [9] 赵海生, 许正文, 吴振森, 冯杰, 吴健, 徐彬, 徐彤, 胡艳莉. 电离层中释放六氟化硫效应的三维精细模拟研究. 物理学报, 2016, 65(20): 209401. doi: 10.7498/aps.65.209401
    [10] 朱肖丽, 胡耀垓, 赵正予, 张援农. 钡和铯释放的电离层扰动效应对比. 物理学报, 2020, 69(2): 029401. doi: 10.7498/aps.69.20191266
    [11] 倪彬彬, 赵正予, 顾旭东, 汪 枫. 场向传播的内磁层哨声波对辐射带高能电子的共振扩散. 物理学报, 2008, 57(12): 7937-7949. doi: 10.7498/aps.57.7937
    [12] 陈丽娟, 鲁世平, 莫嘉琪. 磁层-电离层耦合过程中等离子体粒子运动的周期轨. 物理学报, 2013, 62(9): 090201. doi: 10.7498/aps.62.090201
    [13] M. C. KELLEY, 黄朝松, 李均. 电离层等离子体交换不稳定性与大气重力波的耦合. 物理学报, 1994, 43(2): 239-247. doi: 10.7498/aps.43.239
    [14] 邓峰, 赵正予, 石润, 张援农. 中低纬电离层加热大尺度场向不均匀体的二维数值模拟. 物理学报, 2009, 58(10): 7382-7391. doi: 10.7498/aps.58.7382
    [15] 金晓林, 黄桃, 廖平, 杨中海. 电子回旋共振放电中电子与微波互作用特性的粒子模拟和蒙特卡罗碰撞模拟. 物理学报, 2009, 58(8): 5526-5531. doi: 10.7498/aps.58.5526
    [16] 徐 涵, 常文蔚, 银 燕, 卓红斌, 马燕云. 激光尾波场横向波破的粒子模拟. 物理学报, 2003, 52(7): 1701-1706. doi: 10.7498/aps.52.1701
    [17] 胡耀垓, 赵正予, 项薇, 张援农. 人工电离层洞形态调制及其对短波传播的影响. 物理学报, 2011, 60(9): 099402. doi: 10.7498/aps.60.099402
    [18] 陈兆权, 夏广庆, 刘明海, 郑晓亮, 胡业林, 李平, 徐公林, 洪伶俐, 沈昊宇, 胡希伟. 气体压强及表面等离激元影响表面波等离子体电离发展过程的粒子模拟. 物理学报, 2013, 62(19): 195204. doi: 10.7498/aps.62.195204
    [19] 贺贤土. 高频波激发低频磁场和离子声波的重整化强湍动理论. 物理学报, 1986, 35(3): 283-299. doi: 10.7498/aps.35.283
    [20] 洪振杰, 刘荣建, 郭鹏, 董乃铭. 非球对称电离层掩星数据反演. 物理学报, 2011, 60(12): 129401. doi: 10.7498/aps.60.129401
  • 引用本文:
    Citation:
计量
  • 文章访问数:  851
  • PDF下载量:  500
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-08
  • 修回日期:  2013-12-10
  • 刊出日期:  2014-03-05

基于试验粒子模拟的电离层人工调制激发的极低频和甚低频波对磁层高能电子的散射效应

  • 1. 武汉大学电子信息学院空间物理系, 武汉 430072;
  • 2. 中国纺织大学电子与电气工程学院光电信息系, 武汉 430200;
  • 3. 北京大学空间物理与应用技术研究所, 北京 100871
    基金项目: 

    国家自然科学基金(批准号:41204120)和武汉大学研究生自主科研项目(批准号:2012212020201)资助的课题.

摘要: 电离层调制加热能够有效激发极低频和甚低频(ELF/VLF)波,其中向上传播进入磁层的ELF/VLF 波能够与高能电子发生共振相互作用,具有人工沉降高能电子、消除辐射带等潜在实际用途. 本文综合运用射线追踪和试验粒子方法模拟电离层人工激发的单频ELF/VLF波在电离层和磁层的传播,以及在外辐射带层与高能电子的共振相互作用过程,通过投掷角和能量散射系数评估人工ELF/VLF波对磁层高能电子的共振散射效应. 研究表明,电离层人工ELF/VLF波传播到磁层后呈现高倾斜性,传播所能跨域的空间范围主要取决于加热的纬度位置和调制频率. 在内辐射带,与~100 keV到几个MeV 高能电子发生一阶共振相互作用的为>10 kHz的VLF波段;在外辐射带,为几百Hz到1 kHz的ELF波段. 对于L=4.5的外辐射带,试验粒子模拟结果显示,单个粒子在人工ELF波作用下投掷角和能量(α,E)的改变具有随机性,而所有试验粒子平均化的Δα2 和 ΔE2 随时间呈现出近似线性的增大,说明波粒共振散射过程体现出整体性. 基于试验粒子模拟得到的共振散射系数表明,幅度为10 pT的人工ELF波可在外辐射带的磁赤道局地对1 MeV电子产生较强的投掷角散射效应,进而影响高能电子的损失、沉降等动力学过程. 当人工ELF/VLF波在传播过程中变得高度倾斜,不仅最基本的一阶共振十分重要,高阶共振散射也具有较大效应. 这些定量分析结果表明,通过电离层加热激发人工ELF/VLF哨声波来沉降、消除辐射带高能电子具有可行性.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回