搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黏弹性流体充模过程中凝固现象的数值模拟

王芳 李俊林 杨斌鑫

黏弹性流体充模过程中凝固现象的数值模拟

王芳, 李俊林, 杨斌鑫
PDF
导出引用
导出核心图
  • 建立了黏弹性流体在充模过程中带有相变的气-液两相模型,该模型分别由气、液两相的质量守恒方程、动量守恒方程、能量守恒方程描述,并通过引入Heaviside函数将气-液两相的方程组统一为一个方程组;建立了一个对型腔内熔体和气体都适用的修正的焓方法来描述充模过程中的相变. 采用基于同位网格的有限体积方法对模型进行求解,水平集 方法捕捉充模过程中的界面演化,模拟出了黏弹性流体在充模过程中的凝固现象,得出了充模过程中型腔内的温度、压力、第一法向应力差等随时间的变化;并讨论了型腔壁面温度、熔体温度、注射速度对充模过程中凝固现象的影响. 研究结果表明:型腔壁面温度越高,凝固层越薄;熔体温度越高,凝固层越薄;注射速度越高,凝固层越薄,故提高型腔壁面温度、熔体温度、注射速度可以减少或消除型腔壁面附近的凝固层.
    • 基金项目: 国家自然科学基金(批准号:51078250)、山西省自然科学基金(批准号:2012011019-2,2011011021-3)、山西省研究生优秀创新项目(批准号:20133117)和太原科技大学博士基金(批准号:20112011)资助的课题.
    [1]

    Wang V W, Hieber C A, Wang K K 1986 J. Polym. Eng. 7 21

    [2]

    Chiang H H, Hieber C A, Wang K K 1991 Polym. Eng. Sci. 31 116

    [3]

    Kabanemi K K, Vaillancourt H, Wang H, Salloum G 1998 Polym. Eng. Sci. 38 21

    [4]

    Smith D E, Tortorelli D A, Tucker C L 1998 Comput. Method Appl. M. 167 325

    [5]

    Hetu J F, Gao D M, Garcia-Rejon A, Salloum G 1998 Polym. Eng. Sci. 38 223

    [6]

    Pichelin E, Coupez T 1998 Comput. Method Appl. M. 163 359

    [7]

    Kim S W, Turng L S 2006 Polym. Eng. Sci. 46 1263

    [8]

    Zhou H M, Geng T, Li D Q 2005 J. Reinf. Plast. Comp. 24 823

    [9]

    Chang R Y, Yang W H 2001 Int. J. Numer. Meth. Fl. 27 125

    [10]

    Zhou J, Turng L S 2007 Adv. Polym. Tech. 25 247

    [11]

    Khayat R E, Elsin W, Kim K 2000 Int. J. Numer. Meth. Fl. 33 847

    [12]

    Holm E J, Langtangen H P 1999 Comput. Method Appl. M. 178 413

    [13]

    Luoma J A, Voller V R 2000 Appl. Math. Model. 24 575

    [14]

    Soukane S, Trochu F 2006 Compos. Sci. Technol. 66 1067

    [15]

    Ayad R, Rigolot A 2002 J. Mech. Design 124 813

    [16]

    Geng T, Li D Q, Zhou H M 2006 Eng. Comput. Germany 21 289

    [17]

    Kim M S, Park J S, Lee W I 2003 Int. J. Numer. Meth. Fl. 42 791

    [18]

    Zhou H M, Yan B, Zhang Y 2008 J. Mater. Process. Tech. 204 475

    [19]

    Au C K 2005 Int. J. Mach. Tool. Manu. 45 115

    [20]

    Khor C Y, Ariff Z M, Che Ani F, Abdul Mujeebu M, Abdullah M K, Abdullah M Z, Joseph M A 2010 Int. Commun. Heat Mass 37 131

    [21]

    Yang B X, Ouyang J, Liu C T, Li Q 2010 Chinese J. Chem. Eng. 18 600 (in Chinese) [杨斌鑫, 欧阳洁, 刘春太, 李强 2010 化工学报 18 600]

    [22]

    Ao L, Wang W H, Chen J L, Gao S X, Wu G H 2001 Acta Phys. Sin. 50 793 (in Chinese) [敖玲, 王文洪, 陈京兰, 高淑侠, 吴光恒 2001 物理学报 50 793]

    [23]

    Zhang H Q 2001 Acta Phys. Sin. 50 528 (in Chinese) [张红群2001 物理学报 50 528]

    [24]

    Liu P, Yang T Q, Zhang L Y, Yao X 2000 Acta Phys. Sin. 49 2300 (in Chinese) [刘鹏, 杨同青, 张良莹, 姚熹 2000 物理学报 49 2300]

    [25]

    Li R X, Cheng Y M, Peng M J 2012 Chin. Phys. B 21 090205

    [26]

    Yang F, Zhu K Q 2010 Chin. Phys. Lett. 27 034601

    [27]

    Sussman M, Fatemi E, Smereka P, Osher S 1998 Comput. Fluids 27 663

    [28]

    Yang B X, Ouyang J 2012 Acta Phys. Sin. 61 234602 (in Chinese) [杨斌鑫, 欧阳洁 2012 物理学报 61 234602]

    [29]

    Verbeeten W M H, Peters G W M, Baaijens F T P 2001 J. Rheol. 45 823

    [30]

    Aboubacar M, Aguayo J P, Phillips P M, Phillips T N, Tamaddon-Jahromi H R, Snigerev B A, Webster M F 2005 J. Non-Newton. Fluid 126 207

    [31]

    Rubinstein L I 1994 The Stefan Problem (Providence: Providence Press) p56

    [32]

    Carslaw H S, Jaeger J S 1959 Conduction of Heat in Solids (Oxford: Oxford University Press) p113

    [33]

    Cahn J W, Hilliard J E 1958 J. Chem. Phys. 28 1015

    [34]

    Du L F, Zhang R, Xing H, Zhang L M, Zhang Y, Liu L 2013 Acta Phys. Sin. 62 106401 (in Chinese) [杜立飞, 张蓉, 邢辉, 张利民, 张洋, 刘林 2013 物理学报 62 106401]

    [35]

    Wang T, Li J J, Wang J C 2013 Acta Phys. Sin. 62 106402 (in Chinese) [王陶, 李俊杰, 王锦程 2013 物理学报 62 106402]

    [36]

    Krabbenhoft K, Damkilde L, Nazem M 2007 Int. Commun. Heat Mass 43 233

    [37]

    Kim S, Kim M C, Chun W G 2001 Korean J. Chem. Eng. 18 40

    [38]

    Caldwell J, Date A W 2003 Commun. Numer. Meth. En. 19 865

    [39]

    Luoma J A, Voller V R 2000 Appl. Math. Model. 24 575

    [40]

    Cao Y, Faghri A, Chang W S 1989 Int. Commun. Heat Mass 32 1289

    [41]

    Yang B, Fu X R, Yang W, Liang S P, Hu S, Yang M B 2009 Polym. Eng. Sci. 49 1234

    [42]

    Boronat T, Segui V J, Peydro M A, Reig M J 2009 J. Mater. Process Tech. 209 2735

    [43]

    Shen C Y 2009 Simulation of Injection Molding and Mold Optimization Design Theory and Method (Beijing: Science Press) p53 (in Chinese) [申长雨 2009 注塑成型模拟及模具优化设计理论与方法 (北京: 科学出版社)第53页]

  • [1]

    Wang V W, Hieber C A, Wang K K 1986 J. Polym. Eng. 7 21

    [2]

    Chiang H H, Hieber C A, Wang K K 1991 Polym. Eng. Sci. 31 116

    [3]

    Kabanemi K K, Vaillancourt H, Wang H, Salloum G 1998 Polym. Eng. Sci. 38 21

    [4]

    Smith D E, Tortorelli D A, Tucker C L 1998 Comput. Method Appl. M. 167 325

    [5]

    Hetu J F, Gao D M, Garcia-Rejon A, Salloum G 1998 Polym. Eng. Sci. 38 223

    [6]

    Pichelin E, Coupez T 1998 Comput. Method Appl. M. 163 359

    [7]

    Kim S W, Turng L S 2006 Polym. Eng. Sci. 46 1263

    [8]

    Zhou H M, Geng T, Li D Q 2005 J. Reinf. Plast. Comp. 24 823

    [9]

    Chang R Y, Yang W H 2001 Int. J. Numer. Meth. Fl. 27 125

    [10]

    Zhou J, Turng L S 2007 Adv. Polym. Tech. 25 247

    [11]

    Khayat R E, Elsin W, Kim K 2000 Int. J. Numer. Meth. Fl. 33 847

    [12]

    Holm E J, Langtangen H P 1999 Comput. Method Appl. M. 178 413

    [13]

    Luoma J A, Voller V R 2000 Appl. Math. Model. 24 575

    [14]

    Soukane S, Trochu F 2006 Compos. Sci. Technol. 66 1067

    [15]

    Ayad R, Rigolot A 2002 J. Mech. Design 124 813

    [16]

    Geng T, Li D Q, Zhou H M 2006 Eng. Comput. Germany 21 289

    [17]

    Kim M S, Park J S, Lee W I 2003 Int. J. Numer. Meth. Fl. 42 791

    [18]

    Zhou H M, Yan B, Zhang Y 2008 J. Mater. Process. Tech. 204 475

    [19]

    Au C K 2005 Int. J. Mach. Tool. Manu. 45 115

    [20]

    Khor C Y, Ariff Z M, Che Ani F, Abdul Mujeebu M, Abdullah M K, Abdullah M Z, Joseph M A 2010 Int. Commun. Heat Mass 37 131

    [21]

    Yang B X, Ouyang J, Liu C T, Li Q 2010 Chinese J. Chem. Eng. 18 600 (in Chinese) [杨斌鑫, 欧阳洁, 刘春太, 李强 2010 化工学报 18 600]

    [22]

    Ao L, Wang W H, Chen J L, Gao S X, Wu G H 2001 Acta Phys. Sin. 50 793 (in Chinese) [敖玲, 王文洪, 陈京兰, 高淑侠, 吴光恒 2001 物理学报 50 793]

    [23]

    Zhang H Q 2001 Acta Phys. Sin. 50 528 (in Chinese) [张红群2001 物理学报 50 528]

    [24]

    Liu P, Yang T Q, Zhang L Y, Yao X 2000 Acta Phys. Sin. 49 2300 (in Chinese) [刘鹏, 杨同青, 张良莹, 姚熹 2000 物理学报 49 2300]

    [25]

    Li R X, Cheng Y M, Peng M J 2012 Chin. Phys. B 21 090205

    [26]

    Yang F, Zhu K Q 2010 Chin. Phys. Lett. 27 034601

    [27]

    Sussman M, Fatemi E, Smereka P, Osher S 1998 Comput. Fluids 27 663

    [28]

    Yang B X, Ouyang J 2012 Acta Phys. Sin. 61 234602 (in Chinese) [杨斌鑫, 欧阳洁 2012 物理学报 61 234602]

    [29]

    Verbeeten W M H, Peters G W M, Baaijens F T P 2001 J. Rheol. 45 823

    [30]

    Aboubacar M, Aguayo J P, Phillips P M, Phillips T N, Tamaddon-Jahromi H R, Snigerev B A, Webster M F 2005 J. Non-Newton. Fluid 126 207

    [31]

    Rubinstein L I 1994 The Stefan Problem (Providence: Providence Press) p56

    [32]

    Carslaw H S, Jaeger J S 1959 Conduction of Heat in Solids (Oxford: Oxford University Press) p113

    [33]

    Cahn J W, Hilliard J E 1958 J. Chem. Phys. 28 1015

    [34]

    Du L F, Zhang R, Xing H, Zhang L M, Zhang Y, Liu L 2013 Acta Phys. Sin. 62 106401 (in Chinese) [杜立飞, 张蓉, 邢辉, 张利民, 张洋, 刘林 2013 物理学报 62 106401]

    [35]

    Wang T, Li J J, Wang J C 2013 Acta Phys. Sin. 62 106402 (in Chinese) [王陶, 李俊杰, 王锦程 2013 物理学报 62 106402]

    [36]

    Krabbenhoft K, Damkilde L, Nazem M 2007 Int. Commun. Heat Mass 43 233

    [37]

    Kim S, Kim M C, Chun W G 2001 Korean J. Chem. Eng. 18 40

    [38]

    Caldwell J, Date A W 2003 Commun. Numer. Meth. En. 19 865

    [39]

    Luoma J A, Voller V R 2000 Appl. Math. Model. 24 575

    [40]

    Cao Y, Faghri A, Chang W S 1989 Int. Commun. Heat Mass 32 1289

    [41]

    Yang B, Fu X R, Yang W, Liang S P, Hu S, Yang M B 2009 Polym. Eng. Sci. 49 1234

    [42]

    Boronat T, Segui V J, Peydro M A, Reig M J 2009 J. Mater. Process Tech. 209 2735

    [43]

    Shen C Y 2009 Simulation of Injection Molding and Mold Optimization Design Theory and Method (Beijing: Science Press) p53 (in Chinese) [申长雨 2009 注塑成型模拟及模具优化设计理论与方法 (北京: 科学出版社)第53页]

  • [1] 任金莲, 陆伟刚, 蒋涛. 充模过程中熔接痕的改进光滑粒子动力学方法模拟与预测. 物理学报, 2015, 64(8): 080202. doi: 10.7498/aps.64.080202
    [2] 蒋涛, 陆伟刚, 任金莲, 徐磊, 陆林广. 聚合物充模过程的基于高阶Taylor展开的改进光滑粒子动力学模拟. 物理学报, 2016, 65(22): 220202. doi: 10.7498/aps.65.220202
    [3] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质. 物理学报, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [4] 任晟, 张家忠, 张亚苗, 卫丁. 零质量射流激励下诱发液体相变及其格子Boltzmann方法模拟. 物理学报, 2014, 63(2): 024702. doi: 10.7498/aps.63.024702
    [5] 王震遐, 王 森, 胡建刚, 俞国军. 多壁碳纳米管在循环相变过程中结构变化初探. 物理学报, 2005, 54(9): 4263-4268. doi: 10.7498/aps.54.4263
    [6] 董丽芳, 杨玉杰, 范伟丽, 岳晗, 王帅, 肖红. 介质阻挡放电中放电丝结构相变过程研究. 物理学报, 2010, 59(3): 1917-1922. doi: 10.7498/aps.59.1917
    [7] 李晓凤, 刘中利, 彭卫民, 赵阿可. 高压下CaPo弹性性质和热力学性质的第一性原理研究. 物理学报, 2011, 60(7): 076501. doi: 10.7498/aps.60.076501
    [8] 马通, 谢红献. 单晶铁沿[101]晶向冲击过程中面心立方相的形成机制. 物理学报, 2020, 69(13): 130202. doi: 10.7498/aps.69.20191877
    [9] 李俊, 吴强, 于继东, 谭叶, 姚松林, 薛桃, 金柯. 铁冲击相变的晶向效应. 物理学报, 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
    [10] 刘 红, 王 慧. 双轴性向列相液晶的相变理论. 物理学报, 2005, 54(3): 1306-1312. doi: 10.7498/aps.54.1306
    [11] L. Gerward, 王 晖, 刘金芳, 何 燕, 陈 伟, 王 莺, 蒋建中. 高压下纳米锗的状态方程与相变. 物理学报, 2007, 56(11): 6521-6525. doi: 10.7498/aps.56.6521
    [12] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [13] 陈斌, 彭向和, 范镜泓, 孙士涛, 罗吉. 考虑相变的热弹塑性本构方程及其应用. 物理学报, 2009, 58(13): 29-S34. doi: 10.7498/aps.58.29
    [14] 季正华, 曾祥华, 岑洁萍, 谭明秋. ZnSe相变、电子结构的第一性原理计算. 物理学报, 2010, 59(2): 1219-1224. doi: 10.7498/aps.59.1219
    [15] 邵建立, 秦承森, 王裴. 动态压缩下马氏体相变力学性质的微观研究. 物理学报, 2009, 58(3): 1936-1941. doi: 10.7498/aps.58.1936
    [16] 梁晓琳, 刘志壮, 吕业刚, 龚跃球, 郑学军. 外加电场对铁电薄膜相变的影响. 物理学报, 2010, 59(11): 8167-8171. doi: 10.7498/aps.59.8167
    [17] 刘丹阳, 王亚伟, 王仙, 何昆, 张兴娟, 杨春信. 氧相变换热器内压力波动的混沌特性分析. 物理学报, 2012, 61(15): 150506. doi: 10.7498/aps.61.150506
    [18] 王军国, 刘福生, 李永宏, 张明建, 张宁超, 薛学东. 在石英界面处液态水的冲击结构相变. 物理学报, 2012, 61(19): 196201. doi: 10.7498/aps.61.196201
    [19] 潘昊, 胡晓棉, 吴子辉, 戴诚达, 吴强. 铈低压冲击相变数值模拟研究. 物理学报, 2012, 61(20): 206401. doi: 10.7498/aps.61.206401
    [20] 刘洪涛, 孙光爱, 王沿东, 陈波, 汪小琳. 冲击诱发NiTi形状记忆合金相变行为研究. 物理学报, 2013, 62(1): 018103. doi: 10.7498/aps.62.018103
  • 引用本文:
    Citation:
计量
  • 文章访问数:  886
  • PDF下载量:  610
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-11
  • 修回日期:  2014-01-07
  • 刊出日期:  2014-04-05

黏弹性流体充模过程中凝固现象的数值模拟

  • 1. 太原科技大学应用科学学院, 太原 030024
    基金项目: 

    国家自然科学基金(批准号:51078250)、山西省自然科学基金(批准号:2012011019-2,2011011021-3)、山西省研究生优秀创新项目(批准号:20133117)和太原科技大学博士基金(批准号:20112011)资助的课题.

摘要: 建立了黏弹性流体在充模过程中带有相变的气-液两相模型,该模型分别由气、液两相的质量守恒方程、动量守恒方程、能量守恒方程描述,并通过引入Heaviside函数将气-液两相的方程组统一为一个方程组;建立了一个对型腔内熔体和气体都适用的修正的焓方法来描述充模过程中的相变. 采用基于同位网格的有限体积方法对模型进行求解,水平集 方法捕捉充模过程中的界面演化,模拟出了黏弹性流体在充模过程中的凝固现象,得出了充模过程中型腔内的温度、压力、第一法向应力差等随时间的变化;并讨论了型腔壁面温度、熔体温度、注射速度对充模过程中凝固现象的影响. 研究结果表明:型腔壁面温度越高,凝固层越薄;熔体温度越高,凝固层越薄;注射速度越高,凝固层越薄,故提高型腔壁面温度、熔体温度、注射速度可以减少或消除型腔壁面附近的凝固层.

English Abstract

参考文献 (43)

目录

    /

    返回文章
    返回