搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu45Zr55-xAlx (x=3, 7, 12)块体非晶合金的第一性原理分子动力学模拟研究

危洪清 龙志林 许福 张平 唐翌

引用本文:
Citation:

Cu45Zr55-xAlx (x=3, 7, 12)块体非晶合金的第一性原理分子动力学模拟研究

危洪清, 龙志林, 许福, 张平, 唐翌

Study of Cu45Zr55-xAlx (x=3, 7, 12) bulk metallic glasses by ab-initio molecular dynamics simulation

Wei Hong-Qing, Long Zhi-Lin, Xu Fu, Zhang Ping, Tang Yi
PDF
导出引用
  • 利用第一性原理分子动力学模拟对Cu45Zr55-xAlx(x=3,7,12)块体非晶合金熔体在快速冷却为玻璃态过程中原子结构的演变进行了系统的研究. 结果显示,以Al为中心的二十面体是合金熔体在液–固转变过程中最稳定的原子团簇结构,可视为该合金系中的基本结构单元;以Al为中心的稳定团簇的数量和在空间中的组成形式决定了该合金微观结构的非均匀性和原子扩散能力的大小,这也是影响合金宏观力学性能和玻璃形成能力的关键因素.
    Local structural changes from liquid to amorphous state in three Cu45Zr55-xAlx (x=3, 7, 12) ternary metallic glasses have been investigated by the ab initio molecular dynamics simulation. The atomic structure of the glasses has been analyzed by means of bond-type index method in Honeycutt-Andersen and Voronoi tessellation method. Al-centered icosahedral clusters are identified as the basic local structural units and these Al-centered stable clusters play a key role in the structural heterogeneity and glass-forming ability of the Cu-Zr-Al bulk metallic glasses.
    • 基金项目: 湖南省研究生科研创新项目(批准号:CX2011B267)、国家自然科学基金(批准号:51071134,21376199)、湖南省科技厅计划项目(批准号:2012WK2008)和湖南省自然科学基金(批准号:12JJ2024,14JJ3078)资助的课题.
    • Funds: Project supported by the Hunan Provincial Innovation Foundation For Postgraduate, China (Grant No. CX2011B267), the National Natural Science Foundation of China (Grant Nos. 51071134, 21376199), the Planned Science and Technology Project of Hunan Province, China(Grant No.2012WK2008), and the Provincial Natural Science Foundation of Hunan, China (Grant No.12JJ2024, 14JJ3078).
    [1]

    Tang M B, Zhao D Q, Pan M X, Wang W H 2004 Chin. Phys. Lett. 21 901

    [2]

    Inoue A, Zhang W 2004 Mater. Trans. JIM 45 584

    [3]

    Xu D H, Lohwongwatana B, Duan G, Johnson W L, Garland C 2004 Acta Mater. 52 2621

    [4]

    Guo G Q, Yang L, Zhang G Q 2011 Acta Phys. Sin. 60 016103 (in Chinese)[郭古青, 杨亮, 张国庆 2011 物理学报 60 016103]

    [5]

    Fang H Z, Hui X D, Chen G L, Liu Z K 2009 Appl. Phys. Lett. 94 091904

    [6]

    Bai H Y, Tang M B, Wang W H, Wang W L, Yu P 2005 Acta Phys. Sin. 54 3284 (in Chinese)[白海洋, 汤美波, 汪卫华, 王万录, 余鹏 2005 物理学报 54 3284]

    [7]

    Wang D, Tan H, Li Y 2005 Acta Mater. 53 2969

    [8]

    Das J, Tang M B, Kim K B, Theissmann R, Baier F, Wang W H, Eckert J 2005 Phys. Rev. Lett. 94 205501

    [9]

    Kumar G, Ohkubo T, Mukai T, Hono K 2007 Scripta Mater. 57 173

    [10]

    Wang C C, Dong C H 2012 J. Alloys Compd. 510 107

    [11]

    Cheng Y Q, Ma E, Sheng H W 2009 Phys. Rev. Lett. 102 245501

    [12]

    Wang X D, Jiang Q K, Cao Q P, Bednarcik J, Franz H, Jiang J Z 2008 J. Appl. Phys. 104 093519

    [13]

    Yang L, Guo G Q, Chen L Y, Wei S H, Jiang J Z, Wang X D 2010 Scripta Mater. 63 879

    [14]

    Yang L, Gea T, Guo G Q, Huang C L, Meng X F, Wei S H, Chen D, Chen L Y 2013 Intermetallics 34 106

    [15]

    Yang L, Guo G Q 2010 Chin. Phys. B 19 126101

    [16]

    Imran M, Hussain F, Rashid M, Cai Y Q, Ahmad S A 2013 Chin. Phys. B 22 096101

    [17]

    Honeycutt J D, Andersen H C 1987 Phys. Chem. 91 4950

    [18]

    Finney J L 1977 Nature 266 309

    [19]

    Peng H L, Li M Z, Wang W H 2011 Phys. Rev. Lett. 106 135503

    [20]

    Margolina A, Wu S 1988 Polymer 29 2170

  • [1]

    Tang M B, Zhao D Q, Pan M X, Wang W H 2004 Chin. Phys. Lett. 21 901

    [2]

    Inoue A, Zhang W 2004 Mater. Trans. JIM 45 584

    [3]

    Xu D H, Lohwongwatana B, Duan G, Johnson W L, Garland C 2004 Acta Mater. 52 2621

    [4]

    Guo G Q, Yang L, Zhang G Q 2011 Acta Phys. Sin. 60 016103 (in Chinese)[郭古青, 杨亮, 张国庆 2011 物理学报 60 016103]

    [5]

    Fang H Z, Hui X D, Chen G L, Liu Z K 2009 Appl. Phys. Lett. 94 091904

    [6]

    Bai H Y, Tang M B, Wang W H, Wang W L, Yu P 2005 Acta Phys. Sin. 54 3284 (in Chinese)[白海洋, 汤美波, 汪卫华, 王万录, 余鹏 2005 物理学报 54 3284]

    [7]

    Wang D, Tan H, Li Y 2005 Acta Mater. 53 2969

    [8]

    Das J, Tang M B, Kim K B, Theissmann R, Baier F, Wang W H, Eckert J 2005 Phys. Rev. Lett. 94 205501

    [9]

    Kumar G, Ohkubo T, Mukai T, Hono K 2007 Scripta Mater. 57 173

    [10]

    Wang C C, Dong C H 2012 J. Alloys Compd. 510 107

    [11]

    Cheng Y Q, Ma E, Sheng H W 2009 Phys. Rev. Lett. 102 245501

    [12]

    Wang X D, Jiang Q K, Cao Q P, Bednarcik J, Franz H, Jiang J Z 2008 J. Appl. Phys. 104 093519

    [13]

    Yang L, Guo G Q, Chen L Y, Wei S H, Jiang J Z, Wang X D 2010 Scripta Mater. 63 879

    [14]

    Yang L, Gea T, Guo G Q, Huang C L, Meng X F, Wei S H, Chen D, Chen L Y 2013 Intermetallics 34 106

    [15]

    Yang L, Guo G Q 2010 Chin. Phys. B 19 126101

    [16]

    Imran M, Hussain F, Rashid M, Cai Y Q, Ahmad S A 2013 Chin. Phys. B 22 096101

    [17]

    Honeycutt J D, Andersen H C 1987 Phys. Chem. 91 4950

    [18]

    Finney J L 1977 Nature 266 309

    [19]

    Peng H L, Li M Z, Wang W H 2011 Phys. Rev. Lett. 106 135503

    [20]

    Margolina A, Wu S 1988 Polymer 29 2170

计量
  • 文章访问数:  2115
  • PDF下载量:  641
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-23
  • 修回日期:  2014-02-12
  • 刊出日期:  2014-06-05

Cu45Zr55-xAlx (x=3, 7, 12)块体非晶合金的第一性原理分子动力学模拟研究

  • 1. 湘潭大学土木工程与力学学院, 湘潭 411105;
  • 2. 湘潭大学物理系, 湘潭 411105
    基金项目: 

    湖南省研究生科研创新项目(批准号:CX2011B267)、国家自然科学基金(批准号:51071134,21376199)、湖南省科技厅计划项目(批准号:2012WK2008)和湖南省自然科学基金(批准号:12JJ2024,14JJ3078)资助的课题.

摘要: 利用第一性原理分子动力学模拟对Cu45Zr55-xAlx(x=3,7,12)块体非晶合金熔体在快速冷却为玻璃态过程中原子结构的演变进行了系统的研究. 结果显示,以Al为中心的二十面体是合金熔体在液–固转变过程中最稳定的原子团簇结构,可视为该合金系中的基本结构单元;以Al为中心的稳定团簇的数量和在空间中的组成形式决定了该合金微观结构的非均匀性和原子扩散能力的大小,这也是影响合金宏观力学性能和玻璃形成能力的关键因素.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回