搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

异质结电荷转移的密度矩阵理论近似研究

王鹿霞 常凯楠

异质结电荷转移的密度矩阵理论近似研究

王鹿霞, 常凯楠
PDF
导出引用
导出核心图
  • 分子半导体组成的异质结构是染料敏化太阳能电池的主要部分,电荷转移效率的提高是太阳能转换效率的关键. 在金属纳米粒子与染料分子和半导体TiO2 组成的系统中,考虑半导体的晶格结构、电子波函数在晶格边界的反射及金属纳米粒子中的等离激元效应,应用密度矩阵理论研究在光激发分子作用下电荷从分子转移到半导体晶格的动力学过程,采用密度矩阵和波函数相结合的处理方案研究了分子半导体电荷转移过程中的等离激元效应. 研究发现金属钠米粒子激发所产生的等离激元可以使电荷从分子到半导体的转移效率提高3个数量级,是提高电荷转移效率的有效手段,且密度矩阵理论与波函数相结合的方法使得计算分子与15 nm尺度的半导体纳米晶体间的电荷转移成为可能,理论分析了表面等离激元的增益作用对电荷转移的影响.
    • 基金项目: 国家自然科学基金(批准号:11174029)和中央高校基本科研业务费资助的课题.
    [1]

    Yu X H, Sun Z Z, Lian J, Li Y T, Chen Y X, Gao S, Wang X, Wang Y S, Zhao M L 2013 Chin. Phys. Lett. 30 118801

    [2]

    Xu S Y, Hu L H, Li W X, Dai S Y 2011 Acta Phys. Sin. 60 116802 (in Chinese)[徐双英, 胡林华, 李文欣, 戴松元 2011 物理学报 60 116802]

    [3]

    Yella A, Lee H-W, Tsao H N, Yi C, Chandiran A K, Nazeeruddin M K, Diau E W, Yeh C, Zakeeruddin S M, Grätzel M 2011 Science 334 629

    [4]

    Bessho T, Yoneda E, Yum J-H, Guglielmi M, Tavernelli I, Imai H, Rothlisberger U, Nazeeruddin M K, Grätzel M 2009 J. Am. Chem. Soc. 131 5930

    [5]

    Grätzel Gratzel M 2001 Nature 414 338

    [6]

    Pastore M, Fantacci S, Angelis F De 2013 J. Phys. Chem. C 117 3685

    [7]

    Hartland G V 2012 J. Phys. Chem. Lett. 3 1421

    [8]

    Xiang C P, Jin Y, Liu J T, Xu B Z, Wang W M, Wei X, Song C F, Xu Yun 2014 Chin. Phys. B 23 038803

    [9]

    Yoon W J, Jung K Y, Liu J, Duraisamy T, Revur R, Teixeira F L, Sengupta S, Berger P R 2010 Sol. Energ. Mat. Sol. C 94 128

    [10]

    Liu D D, Zang H 2011 Chin. Phys. B 20 097105

    [11]

    Hagglund C, Zach M, Kasemo B 2008 Appl. Phys. Lett. 92 013113

    [12]

    Ishikawa K, Wen C, Yamada K, Okubo T 2004 J. Chem. Eng. Jpn. 37 645

    [13]

    Rand B, Peumans P, Forrest S 2004 J. Appl. Phys. 96 7519

    [14]

    Kulkarni A P, Noone K M, Munechika K, Guyer S R, Ginger D S 2010 Nano Lett. 10 1501

    [15]

    Prezhdo O V, Duncan W R, Prezhdo V V 2009 Prog. Surf. Sci. 84 30

    [16]

    Martsinovich N, Troisi A 2011 J. Phys. Chem. C 115 11781

    [17]

    Zou W B, Zhou J, Jin L, Zhang H P 2012 Acta Phys. Sin 61 097805 (in Chinese)[邹伟博, 周骏, 金理, 张昊鹏 2012 物理学报 61 097805]

    [18]

    Negre C F A, Fuertes V C, Oviedo M B, Oliva F Y, Sanchez C G 2012 J. Phys. Chem. C 116 14748

    [19]

    Oviedo M B, Zarate X, Negre C F A, Schott E, Arratia–Perez R, Sanchez C G 2012 J. Phys. Chem. Lett. 3 2548

    [20]

    Tan Z, Wang L X 2013 Acta Phys. Sin. 62 237303 (in Chinese)[谭姿, 王鹿霞 2013 物理学报 62 237303]

    [21]

    Zhao H M, Wang L X 2009 Acta Phys. Sin. 58 1332 (in Chinese)[赵红敏, 王鹿霞 2009 物理学报 58 1332]

    [22]

    Wang L, Ernstorfer R, Willig F, May V 2005 J. Phys Chem B 109 9589

    [23]

    Zelinskyy Y, Zhang Y, May V 2012 J. Phys. Chem. A 116 11330

    [24]

    Tsivlin D V, Willig F, May V 2008 Phys. Rev. B 77 035319

    [25]

    Schelling P K, Yu N, Halley J W 1998 Phys. Rev. B 58 1279

    [26]

    Kyas G, May V 2011 J. Chem. Phys. 134 034701

    [27]

    Sun X F, Wang L X 2014 Acta Phys. Sin 63 097301 (in Chinese) [孙雪菲, 王鹿霞 2014 物理学报 63 097301]

  • [1]

    Yu X H, Sun Z Z, Lian J, Li Y T, Chen Y X, Gao S, Wang X, Wang Y S, Zhao M L 2013 Chin. Phys. Lett. 30 118801

    [2]

    Xu S Y, Hu L H, Li W X, Dai S Y 2011 Acta Phys. Sin. 60 116802 (in Chinese)[徐双英, 胡林华, 李文欣, 戴松元 2011 物理学报 60 116802]

    [3]

    Yella A, Lee H-W, Tsao H N, Yi C, Chandiran A K, Nazeeruddin M K, Diau E W, Yeh C, Zakeeruddin S M, Grätzel M 2011 Science 334 629

    [4]

    Bessho T, Yoneda E, Yum J-H, Guglielmi M, Tavernelli I, Imai H, Rothlisberger U, Nazeeruddin M K, Grätzel M 2009 J. Am. Chem. Soc. 131 5930

    [5]

    Grätzel Gratzel M 2001 Nature 414 338

    [6]

    Pastore M, Fantacci S, Angelis F De 2013 J. Phys. Chem. C 117 3685

    [7]

    Hartland G V 2012 J. Phys. Chem. Lett. 3 1421

    [8]

    Xiang C P, Jin Y, Liu J T, Xu B Z, Wang W M, Wei X, Song C F, Xu Yun 2014 Chin. Phys. B 23 038803

    [9]

    Yoon W J, Jung K Y, Liu J, Duraisamy T, Revur R, Teixeira F L, Sengupta S, Berger P R 2010 Sol. Energ. Mat. Sol. C 94 128

    [10]

    Liu D D, Zang H 2011 Chin. Phys. B 20 097105

    [11]

    Hagglund C, Zach M, Kasemo B 2008 Appl. Phys. Lett. 92 013113

    [12]

    Ishikawa K, Wen C, Yamada K, Okubo T 2004 J. Chem. Eng. Jpn. 37 645

    [13]

    Rand B, Peumans P, Forrest S 2004 J. Appl. Phys. 96 7519

    [14]

    Kulkarni A P, Noone K M, Munechika K, Guyer S R, Ginger D S 2010 Nano Lett. 10 1501

    [15]

    Prezhdo O V, Duncan W R, Prezhdo V V 2009 Prog. Surf. Sci. 84 30

    [16]

    Martsinovich N, Troisi A 2011 J. Phys. Chem. C 115 11781

    [17]

    Zou W B, Zhou J, Jin L, Zhang H P 2012 Acta Phys. Sin 61 097805 (in Chinese)[邹伟博, 周骏, 金理, 张昊鹏 2012 物理学报 61 097805]

    [18]

    Negre C F A, Fuertes V C, Oviedo M B, Oliva F Y, Sanchez C G 2012 J. Phys. Chem. C 116 14748

    [19]

    Oviedo M B, Zarate X, Negre C F A, Schott E, Arratia–Perez R, Sanchez C G 2012 J. Phys. Chem. Lett. 3 2548

    [20]

    Tan Z, Wang L X 2013 Acta Phys. Sin. 62 237303 (in Chinese)[谭姿, 王鹿霞 2013 物理学报 62 237303]

    [21]

    Zhao H M, Wang L X 2009 Acta Phys. Sin. 58 1332 (in Chinese)[赵红敏, 王鹿霞 2009 物理学报 58 1332]

    [22]

    Wang L, Ernstorfer R, Willig F, May V 2005 J. Phys Chem B 109 9589

    [23]

    Zelinskyy Y, Zhang Y, May V 2012 J. Phys. Chem. A 116 11330

    [24]

    Tsivlin D V, Willig F, May V 2008 Phys. Rev. B 77 035319

    [25]

    Schelling P K, Yu N, Halley J W 1998 Phys. Rev. B 58 1279

    [26]

    Kyas G, May V 2011 J. Chem. Phys. 134 034701

    [27]

    Sun X F, Wang L X 2014 Acta Phys. Sin 63 097301 (in Chinese) [孙雪菲, 王鹿霞 2014 物理学报 63 097301]

  • [1] 高静, 常凯楠, 王鹿霞. 光激发作用下分子与多金属纳米粒子间的电荷转移研究. 物理学报, 2015, 64(14): 147303. doi: 10.7498/aps.64.147303
    [2] 戚晓秋, 汪峰, 戴长建. 碱金属原子的光激发与光电离. 物理学报, 2015, 64(13): 133201. doi: 10.7498/aps.64.133201
    [3] 孙雪菲, 王鹿霞. 分子激发中的表面等离激元增强效应. 物理学报, 2014, 63(9): 097301. doi: 10.7498/aps.63.097301
    [4] 谭姿, 王鹿霞. 异质结线性吸收谱中的等离激元效应. 物理学报, 2013, 62(23): 237303. doi: 10.7498/aps.62.237303
    [5] 贾博仑, 邓玲玲, 陈若曦, 张雅男, 房旭民. 利用Ag@SiO2纳米粒子等离子体共振增强发光二极管辐射功率的数值研究. 物理学报, 2017, 66(23): 237801. doi: 10.7498/aps.66.237801
    [6] 王垒, 蔡卫, 谭信辉, 向吟啸, 张心正, 许京军. 截面形状对快电子激发纳米双线表面等离激元的影响. 物理学报, 2011, 60(6): 067305. doi: 10.7498/aps.60.067305
    [7] 谌璐, 陈跃刚. 金属-光折变材料复合全息结构对表面等离激元的波前调控. 物理学报, 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [8] 黄志芳, 倪亚贤, 孙华. 柱状磁光颗粒的局域表面等离激元共振及尺寸效应. 物理学报, 2016, 65(11): 114202. doi: 10.7498/aps.65.114202
    [9] 任燕如, 尹道乐. 金属中声学等离激元的产生条件. 物理学报, 1981, 30(4): 545-548. doi: 10.7498/aps.30.545
    [10] 李盼. 表面等离激元纳米聚焦研究进展. 物理学报, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [11] 尹海峰, 张红, 岳莉. C60富勒烯二聚物的等离激元激发. 物理学报, 2014, 63(12): 127303. doi: 10.7498/aps.63.127303
    [12] 冯仕靓, 王靖宇, 陈舒, 孟令雁, 沈少鑫, 杨志林. 表面等离激元“热点”的可控激发及近场增强光谱学. 物理学报, 2019, 68(14): 147801. doi: 10.7498/aps.68.20190305
    [13] 尹海峰, 毛力. 一维原子链局域等离激元的非线性激发. 物理学报, 2016, 65(8): 087301. doi: 10.7498/aps.65.087301
    [14] 朱旭鹏, 张轼, 石惠民, 陈智全, 全军, 薛书文, 张军, 段辉高. 金属表面等离激元耦合理论研究进展. 物理学报, 2019, 68(24): 247301. doi: 10.7498/aps.68.20191369
    [15] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗. 物理学报, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [16] 丛超, 吴大建, 刘晓峻. 椭圆截面金纳米管的局域表面等离激元共振特性研究. 物理学报, 2011, 60(4): 046102. doi: 10.7498/aps.60.046102
    [17] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [18] 丛超, 吴大建, 刘晓峻, 李勃. 金银三层纳米管局域表面等离激元共振特性研究. 物理学报, 2012, 61(3): 037301. doi: 10.7498/aps.61.037301
    [19] 邹伟博, 周骏, 金理, 张昊鹏. 金纳米球壳对的局域表面等离激元共振特性分析. 物理学报, 2012, 61(9): 097805. doi: 10.7498/aps.61.097805
    [20] 张兴坊, 闫昕. 金纳米球壳表面等离激元共振波长调谐特性研究. 物理学报, 2013, 62(3): 037805. doi: 10.7498/aps.62.037805
  • 引用本文:
    Citation:
计量
  • 文章访问数:  513
  • PDF下载量:  372
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-03
  • 修回日期:  2014-03-21
  • 刊出日期:  2014-07-05

异质结电荷转移的密度矩阵理论近似研究

  • 1. 北京科技大学数理学院物理系, 北京 100083
    基金项目: 

    国家自然科学基金(批准号:11174029)和中央高校基本科研业务费资助的课题.

摘要: 分子半导体组成的异质结构是染料敏化太阳能电池的主要部分,电荷转移效率的提高是太阳能转换效率的关键. 在金属纳米粒子与染料分子和半导体TiO2 组成的系统中,考虑半导体的晶格结构、电子波函数在晶格边界的反射及金属纳米粒子中的等离激元效应,应用密度矩阵理论研究在光激发分子作用下电荷从分子转移到半导体晶格的动力学过程,采用密度矩阵和波函数相结合的处理方案研究了分子半导体电荷转移过程中的等离激元效应. 研究发现金属钠米粒子激发所产生的等离激元可以使电荷从分子到半导体的转移效率提高3个数量级,是提高电荷转移效率的有效手段,且密度矩阵理论与波函数相结合的方法使得计算分子与15 nm尺度的半导体纳米晶体间的电荷转移成为可能,理论分析了表面等离激元的增益作用对电荷转移的影响.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回