搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pr含量对Bi5Fe0.5Co0.5Ti3O15室温多铁性的影响

王琴 王逸伦 王浩 孙慧 毛翔宇 陈小兵

引用本文:
Citation:

Pr含量对Bi5Fe0.5Co0.5Ti3O15室温多铁性的影响

王琴, 王逸伦, 王浩, 孙慧, 毛翔宇, 陈小兵

Effect of doping Pr on multiferroic properties of Bi5Fe0.5Co0.5Ti3O15 ceramics at room temperature

Wang Qin, Wang Yi-Lun, Wang Hao, Sun Hui, Mao Xiang-Yu, Chen Xiao-Bing
PDF
导出引用
  • 采用改良的固相烧结工艺制备了Bi5-xPrxFe0.5Co0.5Ti3O15(BPFCT-x,x=0.25,0.50,0.75,0.80)陶瓷样品. X射线衍射结构分析表明:镨(Pr)含量对样品微观结构产生了影响,但所有样品均为层状钙钛矿结构;BPFCT-x样品的剩余极化强度(2Pr)随着掺杂量的增加呈现出先增大后减小的变化趋势,当Pr 含量为0.75时,样品的2Pr达到最大值,为6.43 μC/cm2. 样品的磁性与铁电性能具有相同的变化规律,室温下样品的剩余磁化强度(2Mr)也呈现出先增大后减小的趋势,并且也在x=0.75时达到最大为0.097 emu/g. 随着Pr掺杂量增大,样品的室温下铁电和铁磁性能得到明显改善,并且当掺杂量为0.75时,样品室温多铁性最好. Pr掺杂降低了样品中的缺陷浓度,从而提高了样品铁电畴动性,这有助于提高样品铁电性能. 而样品铁磁性能的改善可能与Pr对样品晶格畸变产生的影响有关.
    The polycrystalline Bi5-xPrxFe0.5Co0.5Ti3O15 (BPFCT-x: x=0.25, 0.50, 075, 0.80) ceramics are prepared by an improved solid state reaction method. X-ray diffraction structure analysis shows that the content of Pr has an influence on the microstructure of sample, but all the samples are layered perovskite structure. The remanent polarization (2Pr) first increases and then decreases with the increase of Pr content (x), so do the magnetic and ferroelectric properties. The remanent polarization reaches a maximum vaule of 6.43 μC/cm2, when x = 0.75. The remanent magnetization (2Mr) increases to a maximum value of 0.097 emu/g when x=0.75, and then decreases with the increase of Pr content (x). with the increase of Pr doping the ferroelectric and ferromagnetic properties of sample at room temperature can be obviously improved, and when x=0.75, multiferroic properties of the sample at room temperature is the best. The improvement in ferroelectric properties of sample is related to Pr doping. With the increase of Pr content (x), the defect concentration of the sample can be reduced, ferroelectric domain of movement can be improved, and the improvement in ferromagnetic property is possibly related to the lattice deformation which is affected by Pr.
    • 基金项目: 国家自然科学基金会(批准号:510721770,11374227)、国家重点基础研究发展计划(批准号:2012CB22001)和江苏省省属高校自然科学研究面上项目(批准号:12KJB140013)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 510721770, 11374227), the National Basic Research Program of China (Grant No. 2012CB22001), and the Natural Science Research Project of Jiangsu Provincial Colleges and Universities, China (Grant No. 12KJB140013).
    [1]

    Spaldin N A, Fiebig M 2005 Science 309 391

    [2]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759

    [3]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanthan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wutting M, Ramesh R 2003 Science 299 1719

    [4]

    Sun Y, Huang Z F, Fan H G, Ming X, Wang C Z, Chen G 2009 Acta Phys. Sin. 58 193 (in Chinese) [孙源, 黄祖飞, 范厚刚, 明星, 王春忠, 陈岗 2009 物理学报 58 193]

    [5]

    Chen X B, Hui R, Zhu J 2004 J. Appl. Phys. 96 1

    [6]

    Park B H, Hyun S J, Bu S D, Noh T W, Lee J, Kim H-D, Kim T H, Jo W 1999 Appl. Phys. Lett. 74 1907

    [7]

    Kubel F, Schmid H 1992 Ferroelectrics 129 101

    [8]

    Kim S K, Miyayama M, Yanagida H 1996 Mater. Res. Bull. 31 121

    [9]

    Porob D G, Maggard P A 2006 Mater. Res. Bull. 41 1513

    [10]

    Singh R S, Bhimasankaram T, Kumar G S, Suryananrayana S V 1994 Solid State Commun. 91 576

    [11]

    Srinivas A, Suryananrayana S V, Kumar G S, Mahesh K M 1999 J. Phys.: Coondens. Matter 11 3335

    [12]

    Luo B C, Zhou C C, Chen C L, Jin K X 2009 Acta Phys. Sin. 58 4563 (in Chinese) [罗炳成, 周超超, 陈长乐, 金克新 2009 物理学报 58 4563]

    [13]

    Mao X Y, Wang W, Chen X B, Lu Y L 2009 Appl. Phys. Lett. 95 082901

    [14]

    Lah M A, Habout I, SDiet Z M 2009 Appl. Phys. Lett. 94 012903

    [15]

    Liu J, Fang L, Zheng F, Ju S, Shen M 2009 Appl. Phys. Lett. 95 022511

    [16]

    Khomchenko V A, Troyanchuk I O, Kovetskaya M I, Paixao J A 2012 J. Appl. Phys. 111 014110

    [17]

    Guo R, Fang L, Dong W, Zheng F, Shen M 2010 J. Phys. Chem. 114 21390

    [18]

    Li N N, Li H, Tang R L, Han D D, Zhao Y S, Gao W, Zhu P W, Wang X 2014 Chin. Phys. B 23 046105

    [19]

    Sun S J, Ling Y H, Peng R R, Liu M, Mao X Y, Chen X B, Knized J R, Lu Y L 2013 RSC Adv. 3 18567

    [20]

    Zheng L, Wu X S 2013 Chin. Phys. B 22 107806

    [21]

    Mao X Y, Sun H, Wang W, Chen X B, Lu Y L 2013 Appl. Phys. Lett. 10 072904

    [22]

    Simant K S, Gajbhiye N S, Banerjee A 2013 J. Appl. Phys. 113 203917

    [23]

    Dong C, Wu F, Chen H 1999 J. Appl. Cryst. 32 850

    [24]

    Yang F J, Su P, Wei C, Chen X Q, Yang C P, Cao W Q 2011 J. Appl. Phys. 110 126102

    [25]

    Singh R S, Bhimasankaram T, Kumar G S, Suryananrayana S V 1994 Solid State Commun. 91 567

    [26]

    Dong X W, Wang K F, Wan J G, Zhu J S, Liu J M 2008 J. Appl. Phys. 103 094101

    [27]

    Singh R S, Bhimasankaram T, Kumar G S, Suryananrayana S V 1994 Solid State Commun. 91 567

    [28]

    Zhu J, Chen X B, Lu W P, Mao X Y, Hui R 2003 Appl. Phys. Lett. 83 1818

    [29]

    Wang W, Zhu J, Mao X Y, Chen X B 2006 Appl. Phys. Lett. 39 370

    [30]

    Xie B C, He Q, Shen T G 2006 Acta Sin. Opt. 12 95 (in Chinese) [谢秉川, 何勤, 沈廷根 2006 量子光学学报 12 95]

    [31]

    Cai M Q, Liu J C, Yang G W, Cao Y L, Tan X, Yi X, Wang Y G, Wang L L, Hu W Y 2007 J. Chem. Phys. 126 154708

    [32]

    Hu X, Wang W, Mao X Y, Chen X B 2010 Acta Phys. Sin. 59 8160 (in Chinese) [胡星, 王伟, 毛翔宇, 陈小兵 2010 物理学报 59 8160]

  • [1]

    Spaldin N A, Fiebig M 2005 Science 309 391

    [2]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759

    [3]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanthan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wutting M, Ramesh R 2003 Science 299 1719

    [4]

    Sun Y, Huang Z F, Fan H G, Ming X, Wang C Z, Chen G 2009 Acta Phys. Sin. 58 193 (in Chinese) [孙源, 黄祖飞, 范厚刚, 明星, 王春忠, 陈岗 2009 物理学报 58 193]

    [5]

    Chen X B, Hui R, Zhu J 2004 J. Appl. Phys. 96 1

    [6]

    Park B H, Hyun S J, Bu S D, Noh T W, Lee J, Kim H-D, Kim T H, Jo W 1999 Appl. Phys. Lett. 74 1907

    [7]

    Kubel F, Schmid H 1992 Ferroelectrics 129 101

    [8]

    Kim S K, Miyayama M, Yanagida H 1996 Mater. Res. Bull. 31 121

    [9]

    Porob D G, Maggard P A 2006 Mater. Res. Bull. 41 1513

    [10]

    Singh R S, Bhimasankaram T, Kumar G S, Suryananrayana S V 1994 Solid State Commun. 91 576

    [11]

    Srinivas A, Suryananrayana S V, Kumar G S, Mahesh K M 1999 J. Phys.: Coondens. Matter 11 3335

    [12]

    Luo B C, Zhou C C, Chen C L, Jin K X 2009 Acta Phys. Sin. 58 4563 (in Chinese) [罗炳成, 周超超, 陈长乐, 金克新 2009 物理学报 58 4563]

    [13]

    Mao X Y, Wang W, Chen X B, Lu Y L 2009 Appl. Phys. Lett. 95 082901

    [14]

    Lah M A, Habout I, SDiet Z M 2009 Appl. Phys. Lett. 94 012903

    [15]

    Liu J, Fang L, Zheng F, Ju S, Shen M 2009 Appl. Phys. Lett. 95 022511

    [16]

    Khomchenko V A, Troyanchuk I O, Kovetskaya M I, Paixao J A 2012 J. Appl. Phys. 111 014110

    [17]

    Guo R, Fang L, Dong W, Zheng F, Shen M 2010 J. Phys. Chem. 114 21390

    [18]

    Li N N, Li H, Tang R L, Han D D, Zhao Y S, Gao W, Zhu P W, Wang X 2014 Chin. Phys. B 23 046105

    [19]

    Sun S J, Ling Y H, Peng R R, Liu M, Mao X Y, Chen X B, Knized J R, Lu Y L 2013 RSC Adv. 3 18567

    [20]

    Zheng L, Wu X S 2013 Chin. Phys. B 22 107806

    [21]

    Mao X Y, Sun H, Wang W, Chen X B, Lu Y L 2013 Appl. Phys. Lett. 10 072904

    [22]

    Simant K S, Gajbhiye N S, Banerjee A 2013 J. Appl. Phys. 113 203917

    [23]

    Dong C, Wu F, Chen H 1999 J. Appl. Cryst. 32 850

    [24]

    Yang F J, Su P, Wei C, Chen X Q, Yang C P, Cao W Q 2011 J. Appl. Phys. 110 126102

    [25]

    Singh R S, Bhimasankaram T, Kumar G S, Suryananrayana S V 1994 Solid State Commun. 91 567

    [26]

    Dong X W, Wang K F, Wan J G, Zhu J S, Liu J M 2008 J. Appl. Phys. 103 094101

    [27]

    Singh R S, Bhimasankaram T, Kumar G S, Suryananrayana S V 1994 Solid State Commun. 91 567

    [28]

    Zhu J, Chen X B, Lu W P, Mao X Y, Hui R 2003 Appl. Phys. Lett. 83 1818

    [29]

    Wang W, Zhu J, Mao X Y, Chen X B 2006 Appl. Phys. Lett. 39 370

    [30]

    Xie B C, He Q, Shen T G 2006 Acta Sin. Opt. 12 95 (in Chinese) [谢秉川, 何勤, 沈廷根 2006 量子光学学报 12 95]

    [31]

    Cai M Q, Liu J C, Yang G W, Cao Y L, Tan X, Yi X, Wang Y G, Wang L L, Hu W Y 2007 J. Chem. Phys. 126 154708

    [32]

    Hu X, Wang W, Mao X Y, Chen X B 2010 Acta Phys. Sin. 59 8160 (in Chinese) [胡星, 王伟, 毛翔宇, 陈小兵 2010 物理学报 59 8160]

计量
  • 文章访问数:  1797
  • PDF下载量:  385
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-15
  • 修回日期:  2014-03-26
  • 刊出日期:  2014-07-05

Pr含量对Bi5Fe0.5Co0.5Ti3O15室温多铁性的影响

  • 1. 扬州大学物理科学与技术学院, 扬州 225002
    基金项目: 

    国家自然科学基金会(批准号:510721770,11374227)、国家重点基础研究发展计划(批准号:2012CB22001)和江苏省省属高校自然科学研究面上项目(批准号:12KJB140013)资助的课题.

摘要: 采用改良的固相烧结工艺制备了Bi5-xPrxFe0.5Co0.5Ti3O15(BPFCT-x,x=0.25,0.50,0.75,0.80)陶瓷样品. X射线衍射结构分析表明:镨(Pr)含量对样品微观结构产生了影响,但所有样品均为层状钙钛矿结构;BPFCT-x样品的剩余极化强度(2Pr)随着掺杂量的增加呈现出先增大后减小的变化趋势,当Pr 含量为0.75时,样品的2Pr达到最大值,为6.43 μC/cm2. 样品的磁性与铁电性能具有相同的变化规律,室温下样品的剩余磁化强度(2Mr)也呈现出先增大后减小的趋势,并且也在x=0.75时达到最大为0.097 emu/g. 随着Pr掺杂量增大,样品的室温下铁电和铁磁性能得到明显改善,并且当掺杂量为0.75时,样品室温多铁性最好. Pr掺杂降低了样品中的缺陷浓度,从而提高了样品铁电畴动性,这有助于提高样品铁电性能. 而样品铁磁性能的改善可能与Pr对样品晶格畸变产生的影响有关.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回