搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tm3+掺杂锗碲酸盐玻璃的近2 μm光谱性质

高松 王欣 范小康 李科峰 廖梅松 胡丽丽

Tm3+掺杂锗碲酸盐玻璃的近2 μm光谱性质

高松, 王欣, 范小康, 李科峰, 廖梅松, 胡丽丽
PDF
导出引用
导出核心图
  • 用高温熔融法制备了Tm2O3掺杂浓度为0.25, 0.5, 0.75, 1, 1.25, 1.5 mol%的40 GeO2-35TeO2-15PbO-5Al2O3-2.5CaO-2.5SrO锗碲酸盐玻璃. 热学性质测试表明该玻璃的转变温度为446 ℃, 没有析晶峰. 玻璃的最大声子能量约为750 cm-1. 利用Judd-Ofelt 理论计算了Tm3+ 的Judd-Ofelt 参数Ωt(t = 2, 4, 6)、不同浓度下Tm3+ 离子各激发态能级的自发辐射几率、荧光分支比以及辐射寿命等参数. 采用808 nm 波长抽运源测试了Tm3+ 离子的荧光光谱. 发现掺杂浓度为1 mol% 时约1.8 μm 处的荧光强度最强. 根据McCumber 理论计算了3F4 →3H6 的发射截面, 其峰值发射截面为6.5 × 10-21 cm2. 根据速率方程计算了玻璃中OH 引起的Tm3+ 的3F4 能级的无辐射弛豫速率, 随着Tm3+ 浓度增加, OH 对3F4 能级的猝灭速率增加. 这种玻璃有望研制成一种新型的约2 μm 的激光玻璃材料.
    • 基金项目: 国家自然科学基金重点项目(批准号: 61177083)资助的课题.
    [1]

    Tanabe S, Tamai K, Hirao K, Soga N 1993 Phys. Rev. B 47 2507

    [2]

    Hayward R A, Clarkson W A, Turner P W, Nilsson J, Grudinin A B, Hanna D C 2000 Electron. Lett. 36 711

    [3]

    Li G, Gu Y, Yao B, Shan L, Wang Y 2013 Chin. Opt. Lett. 11 091404

    [4]

    Yang J, Tang Y, Xu J 2013 Photon. Res. 1 52

    [5]

    Li S S, Xia H P, Fu L, Dong Y M, Gu X M, Zhang J L, Wang D J, Zhang Y P, Jiang H C, Chen B J 2014 Chin. Phys. B 23 107806

    [6]

    Chen X B, Li S, Ding X L, Yang X D, Liu Q L, Gao Y, Sun P, Yang G J 2014 Chin. Phys. B 23 87809

    [7]

    Li G, Gu Y Q, Yao B Q, Shan L, Wang Y Z 2013 Chin. Opt. Lett. 11 091404

    [8]

    Yu S L, Yang Z M, Xu S H 2010 J. Fluoresc. 20 745

    [9]

    Guo C Z, Shen D Y, Long J Y, Wang F 2012 Chin. Opt. Lett. 10 091406

    [10]

    Wang Q, Geng J H, Luo T, Jiang S B 2009 Opt. Lett. 34 3616

    [11]

    Li K F, Zhang G, Hu L L 2010 Opt. Lett. 35 4136

    [12]

    Wu J F, Yao Z, Zong J, Jiang S B 2007 Opt. Lett. 32 638

    [13]

    Walsh B M, Barnes N P 2004 Appl. Phys. B 78 325

    [14]

    Li X T, Liu X Q, Zhang L Y, Hu L L, Zhang J J 2013 Chin. Opt. Lett. 11 121601

    [15]

    Yang J H, Dai S X, Zhou Y F, Wen L, Hu L L, Jiang Z H 2003 J. Appl. Phys. 93 977

    [16]

    Shin Y B, Cho W Y, Heo J 1996 J. Non-Cryst. Solids 208 29

    [17]

    Yang Q, Chen D D, Qian Q, Zhang Q Y, Yang Z M, Jiang Z H 2009 J. Inorgan. Mater. 24 1049 (in Chinese) [杨琼, 陈东丹, 钱奇, 张勤远, 杨中民, 姜中宏 2009 无机材料学报 24 1049]

    [18]

    Jewell J M, Busse L E, Crahan K, Harbison B B, Aggarwal I D 1994 Proc. SPIE 2287 154

    [19]

    Duffy J A 1989 J. Non-Cryst. Solids 109 35

    [20]

    Gaskell D R 1989 Metall. Trans. B 20 113

    [21]

    Liao M S, Fang Y Z, Sun H T, Hu L L 2007 Opt. Mater. 29 867

    [22]

    Takebe H, Nageno Y, Morinaga K 1995 J. Am. Ceram. Soc. 78 1161

    [23]

    Takebe H, Nageno Y, Morinaga K 1994 J. Am. Ceram. Soc. 77 2132

    [24]

    Yeh D C, Petrin R R, Sibley W A, Madigou V, Adam J L, Suscavage M J 1989 Phys. Rev. B 39 80

    [25]

    Wachtler M, Speghini A, Gatterer K, Fritzer H P, Ajo D, Bettinelli M 1998 J. Am. Ceram. Soc. 81 2045

    [26]

    Shi D M, Zhang Q Y, Yang G F, Jiang Z H 2007 J. Non-Cryst. Solids 353 1508

    [27]

    Wang X, Li K F, Fan S J, Bai G X, Hu L L 2013 J. Inorgan. Mater. 28 165 (in Chinese) [王欣, 李科峰, 凡思军, 白功勋, 胡丽丽 2013 无机材料学报 28 165]

    [28]

    Zhang L Y, Zhang J J, Yu C L, Hu L L 2010 J. Appl. Phys. 108 103117

    [29]

    Tian Y, Xu R R, Zhang L Y, Hu L L 2010 J. Appl. Phys. 108 083504

    [30]

    Doualan J L, Girard S, Haquin H, Adam J L, Montagne J 2003 Opt. Mater. 24 563

    [31]

    Li M, Bai G X, Guo Y Y, Hu L L, Zhang J J 2012 J. Lumin. 132 1830

    [32]

    Zou X L, Toratani H 1996 J. Non-Cryst. Solids 195 113

    [33]

    Wang Y C, Xia H P, Zhang J L, Zhang Q Y 2010 Acta Phys. Sin. 59 5808 (in Chinese) [王勇超, 夏海平, 章践立, 张勤远 2010 物理学报 59 5808]

    [34]

    Wu J F, Jiang S B, Qiu T Q, Morrell M, Schulzgen A, Peyghambarian N 2005 Proc. SPIE 5723 152

    [35]

    Gomes L, Lousteau J, Milanese D, Scarpignato G C, Jackson S D 2012 J. Appl. Phys. 111 063105

    [36]

    Dexter D L 1953 J. Chem. Phys. 21 836

    [37]

    Tarelho L V G, Gomes L, Ranieri I M 1997 Phys. Rev. B 56 14344

    [38]

    Wang X, Fan S J, Li K F, Zhang L, Wang S K, Hu L L 2012 J. Appl. Phys. 112 103521

    [39]

    Han Y S, Heo J, Shin Y B 2003 J. Non-Cryst. Solids 316 302

    [40]

    Balda R, Fernández J, García-Revilla S, Fernández-Navarro J M 2007 Opt. Express 15 6750

    [41]

    Xu R R, Tian Y, Hu L L, Zhang J J 2011 J. Phys. Chem. A 115 6488

    [42]

    Wang X, Hu L L, Li K F, Tian Y, Fan S J 2012 Chin. Opt. Lett. 10 101601

    [43]

    de Sousa D F, Nunes L A O 2002 Phys. Rev. B 66 024207

  • [1]

    Tanabe S, Tamai K, Hirao K, Soga N 1993 Phys. Rev. B 47 2507

    [2]

    Hayward R A, Clarkson W A, Turner P W, Nilsson J, Grudinin A B, Hanna D C 2000 Electron. Lett. 36 711

    [3]

    Li G, Gu Y, Yao B, Shan L, Wang Y 2013 Chin. Opt. Lett. 11 091404

    [4]

    Yang J, Tang Y, Xu J 2013 Photon. Res. 1 52

    [5]

    Li S S, Xia H P, Fu L, Dong Y M, Gu X M, Zhang J L, Wang D J, Zhang Y P, Jiang H C, Chen B J 2014 Chin. Phys. B 23 107806

    [6]

    Chen X B, Li S, Ding X L, Yang X D, Liu Q L, Gao Y, Sun P, Yang G J 2014 Chin. Phys. B 23 87809

    [7]

    Li G, Gu Y Q, Yao B Q, Shan L, Wang Y Z 2013 Chin. Opt. Lett. 11 091404

    [8]

    Yu S L, Yang Z M, Xu S H 2010 J. Fluoresc. 20 745

    [9]

    Guo C Z, Shen D Y, Long J Y, Wang F 2012 Chin. Opt. Lett. 10 091406

    [10]

    Wang Q, Geng J H, Luo T, Jiang S B 2009 Opt. Lett. 34 3616

    [11]

    Li K F, Zhang G, Hu L L 2010 Opt. Lett. 35 4136

    [12]

    Wu J F, Yao Z, Zong J, Jiang S B 2007 Opt. Lett. 32 638

    [13]

    Walsh B M, Barnes N P 2004 Appl. Phys. B 78 325

    [14]

    Li X T, Liu X Q, Zhang L Y, Hu L L, Zhang J J 2013 Chin. Opt. Lett. 11 121601

    [15]

    Yang J H, Dai S X, Zhou Y F, Wen L, Hu L L, Jiang Z H 2003 J. Appl. Phys. 93 977

    [16]

    Shin Y B, Cho W Y, Heo J 1996 J. Non-Cryst. Solids 208 29

    [17]

    Yang Q, Chen D D, Qian Q, Zhang Q Y, Yang Z M, Jiang Z H 2009 J. Inorgan. Mater. 24 1049 (in Chinese) [杨琼, 陈东丹, 钱奇, 张勤远, 杨中民, 姜中宏 2009 无机材料学报 24 1049]

    [18]

    Jewell J M, Busse L E, Crahan K, Harbison B B, Aggarwal I D 1994 Proc. SPIE 2287 154

    [19]

    Duffy J A 1989 J. Non-Cryst. Solids 109 35

    [20]

    Gaskell D R 1989 Metall. Trans. B 20 113

    [21]

    Liao M S, Fang Y Z, Sun H T, Hu L L 2007 Opt. Mater. 29 867

    [22]

    Takebe H, Nageno Y, Morinaga K 1995 J. Am. Ceram. Soc. 78 1161

    [23]

    Takebe H, Nageno Y, Morinaga K 1994 J. Am. Ceram. Soc. 77 2132

    [24]

    Yeh D C, Petrin R R, Sibley W A, Madigou V, Adam J L, Suscavage M J 1989 Phys. Rev. B 39 80

    [25]

    Wachtler M, Speghini A, Gatterer K, Fritzer H P, Ajo D, Bettinelli M 1998 J. Am. Ceram. Soc. 81 2045

    [26]

    Shi D M, Zhang Q Y, Yang G F, Jiang Z H 2007 J. Non-Cryst. Solids 353 1508

    [27]

    Wang X, Li K F, Fan S J, Bai G X, Hu L L 2013 J. Inorgan. Mater. 28 165 (in Chinese) [王欣, 李科峰, 凡思军, 白功勋, 胡丽丽 2013 无机材料学报 28 165]

    [28]

    Zhang L Y, Zhang J J, Yu C L, Hu L L 2010 J. Appl. Phys. 108 103117

    [29]

    Tian Y, Xu R R, Zhang L Y, Hu L L 2010 J. Appl. Phys. 108 083504

    [30]

    Doualan J L, Girard S, Haquin H, Adam J L, Montagne J 2003 Opt. Mater. 24 563

    [31]

    Li M, Bai G X, Guo Y Y, Hu L L, Zhang J J 2012 J. Lumin. 132 1830

    [32]

    Zou X L, Toratani H 1996 J. Non-Cryst. Solids 195 113

    [33]

    Wang Y C, Xia H P, Zhang J L, Zhang Q Y 2010 Acta Phys. Sin. 59 5808 (in Chinese) [王勇超, 夏海平, 章践立, 张勤远 2010 物理学报 59 5808]

    [34]

    Wu J F, Jiang S B, Qiu T Q, Morrell M, Schulzgen A, Peyghambarian N 2005 Proc. SPIE 5723 152

    [35]

    Gomes L, Lousteau J, Milanese D, Scarpignato G C, Jackson S D 2012 J. Appl. Phys. 111 063105

    [36]

    Dexter D L 1953 J. Chem. Phys. 21 836

    [37]

    Tarelho L V G, Gomes L, Ranieri I M 1997 Phys. Rev. B 56 14344

    [38]

    Wang X, Fan S J, Li K F, Zhang L, Wang S K, Hu L L 2012 J. Appl. Phys. 112 103521

    [39]

    Han Y S, Heo J, Shin Y B 2003 J. Non-Cryst. Solids 316 302

    [40]

    Balda R, Fernández J, García-Revilla S, Fernández-Navarro J M 2007 Opt. Express 15 6750

    [41]

    Xu R R, Tian Y, Hu L L, Zhang J J 2011 J. Phys. Chem. A 115 6488

    [42]

    Wang X, Hu L L, Li K F, Tian Y, Fan S J 2012 Chin. Opt. Lett. 10 101601

    [43]

    de Sousa D F, Nunes L A O 2002 Phys. Rev. B 66 024207

  • [1] 张勤远, 杨中民, 姜中宏, 赵 纯. GeO2含量对掺铒锗碲酸盐玻璃物性和光谱特性的影响. 物理学报, 2006, 55(6): 3106-3111. doi: 10.7498/aps.55.3106
    [2] 沈 祥, 聂秋华, 徐铁峰, 高 媛. Er3+/Yb3+共掺碲钨酸盐玻璃的光谱性质和热稳定性的研究. 物理学报, 2005, 54(5): 2379-2384. doi: 10.7498/aps.54.2379
    [3] 张勤远, 姜中宏, 李 涛. Ce3+对Er3+/Yb3+共掺氟磷酸盐玻璃光谱性质的影响. 物理学报, 2006, 55(8): 4298-4303. doi: 10.7498/aps.55.4298
    [4] 贾相华, 吕树臣. Er3+及Er3+/Yb3+共掺铋酸盐玻璃光谱性质研究. 物理学报, 2007, 56(8): 4971-4976. doi: 10.7498/aps.56.4971
    [5] 柳祝平, 胡丽丽, 张德宝, 戴世勋, 祁长鸿, 姜中宏. Yb3+,Er3+离子共掺磷酸盐铒玻璃的Judd-Ofelt光谱参数与光谱性质. 物理学报, 2002, 51(11): 2629-2634. doi: 10.7498/aps.51.2629
    [6] 乔延波, 达 宁, 陈丹平, 邱建荣. 钕离子掺杂和钕铝共掺高硅氧玻璃的光谱性质研究. 物理学报, 2007, 56(12): 7023-7028. doi: 10.7498/aps.56.7023
    [7] 李 涛, 张勤远, 冯洲明, 赵 纯, 姜中宏. 碱金属和碱土金属氟化物对掺Er3+氟磷酸盐玻璃光谱性质的影响. 物理学报, 2005, 54(10): 4926-4932. doi: 10.7498/aps.54.4926
    [8] 柳祝平, 唐景平, 胡丽丽, 姜中宏. Cr3+,Yb3+,Er3+共掺磷酸盐铒玻璃转镜调Q激光性质研究. 物理学报, 2005, 54(9): 4422-4426. doi: 10.7498/aps.54.4422
    [9] 刘丽莎, 吕树臣, 孙江亭. Er3+/Yb3+共掺TeO2-WO3-Bi2O3玻璃的光谱性质和上转换发光. 物理学报, 2010, 59(9): 6637-6641. doi: 10.7498/aps.59.6637
    [10] 张龙, 林凤英, 胡和方. Yb3+掺杂四磷酸盐玻璃光谱研究. 物理学报, 2001, 50(7): 1378-1384. doi: 10.7498/aps.50.1378
    [11] 石冬梅, 张勤远, 杨钢锋, 姜中宏. Tm3+/Ho3+共掺镓铋酸盐玻璃1.47μm发光特性和能量传递的研究. 物理学报, 2007, 56(5): 2951-2957. doi: 10.7498/aps.56.2951
    [12] 钱 奇, 王 琰, 张勤远, 杨中民, 杨钢锋, 姜中宏. 可紫外激光刻写的掺铒铋硅酸盐玻璃光谱性质研究. 物理学报, 2007, 56(5): 2736-2741. doi: 10.7498/aps.56.2736
    [13] 杨建虎, 戴世勋, 温 磊, 柳祝平, 胡丽丽, 姜中宏. 掺铒铋酸盐玻璃的光谱性质和热稳定性研究. 物理学报, 2003, 52(2): 508-514. doi: 10.7498/aps.52.508
    [14] 马红萍, 徐时清, 姜中宏. 掺铒重金属氧氟硅铋酸盐玻璃的光谱性质. 物理学报, 2004, 53(5): 1378-1383. doi: 10.7498/aps.53.1378
    [15] 刘粤惠, 陈东丹, 侯志远, 陈 鹤, 张勤远, 邓再德, 姜中宏. 977nm抽运下掺铒碲酸盐基氧卤玻璃的光谱特性. 物理学报, 2005, 54(1): 422-428. doi: 10.7498/aps.54.422
    [16] 戴世勋, 张军杰, 胡丽丽, 姜中宏, 汪国年. Yb:铅锌镧碲酸盐玻璃的热学、光谱和激光性质. 物理学报, 2005, 54(4): 1854-1858. doi: 10.7498/aps.54.1854
    [17] 陈炳炎, 刘粤惠, 陈东丹, 姜中宏. 一种新型掺铒碲酸盐玻璃的光谱性质研究. 物理学报, 2005, 54(5): 2374-2378. doi: 10.7498/aps.54.2374
    [18] 戴世勋, 厉旭杰, 聂秋华, 徐铁峰, 沈 祥, 王训四. Yb3+敏化的Er3+/Ho3+共掺碲酸盐玻璃的上转换发光研究. 物理学报, 2007, 56(9): 5518-5525. doi: 10.7498/aps.56.5518
    [19] 曾智江, 杨秋红, 徐 军. Cr3+:Al2O3透明多晶陶瓷光谱特性分析. 物理学报, 2005, 54(11): 5445-5449. doi: 10.7498/aps.54.5445
    [20] 杨秋红, 曾智江, 徐 军, 苏良碧. Mg,Ti共掺Al2O3透明多晶陶瓷光谱性能研究. 物理学报, 2006, 55(6): 2726-2729. doi: 10.7498/aps.55.2726
  • 引用本文:
    Citation:
计量
  • 文章访问数:  679
  • PDF下载量:  261
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-06
  • 修回日期:  2014-08-27
  • 刊出日期:  2014-12-05

Tm3+掺杂锗碲酸盐玻璃的近2 μm光谱性质

  • 1. 中国科学院上海光学精密机械研究所, 高功率激光单元技术研发中心, 上海 201800;
  • 2. 中国科学院大学, 北京 100049
    基金项目: 

    国家自然科学基金重点项目(批准号: 61177083)资助的课题.

摘要: 用高温熔融法制备了Tm2O3掺杂浓度为0.25, 0.5, 0.75, 1, 1.25, 1.5 mol%的40 GeO2-35TeO2-15PbO-5Al2O3-2.5CaO-2.5SrO锗碲酸盐玻璃. 热学性质测试表明该玻璃的转变温度为446 ℃, 没有析晶峰. 玻璃的最大声子能量约为750 cm-1. 利用Judd-Ofelt 理论计算了Tm3+ 的Judd-Ofelt 参数Ωt(t = 2, 4, 6)、不同浓度下Tm3+ 离子各激发态能级的自发辐射几率、荧光分支比以及辐射寿命等参数. 采用808 nm 波长抽运源测试了Tm3+ 离子的荧光光谱. 发现掺杂浓度为1 mol% 时约1.8 μm 处的荧光强度最强. 根据McCumber 理论计算了3F4 →3H6 的发射截面, 其峰值发射截面为6.5 × 10-21 cm2. 根据速率方程计算了玻璃中OH 引起的Tm3+ 的3F4 能级的无辐射弛豫速率, 随着Tm3+ 浓度增加, OH 对3F4 能级的猝灭速率增加. 这种玻璃有望研制成一种新型的约2 μm 的激光玻璃材料.

English Abstract

参考文献 (43)

目录

    /

    返回文章
    返回