搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低对称性光子晶体超宽带全角自准直传输的机理研究

梁文耀 张玉霞 陈武喝

低对称性光子晶体超宽带全角自准直传输的机理研究

梁文耀, 张玉霞, 陈武喝
PDF
导出引用
  • 提出了一种低对称性椭圆介质柱二维光子晶体结构, 利用平面波展开法研究了该结构在第一布里渊区的能带特性. 讨论了全角自准直效应的物理机制及椭圆柱结构参数对其带宽的影响, 明确给出了自准直传播模式的存在判据. 研究发现, 自准直模式几乎覆盖了TE偏振的整个第四能带, 而且该能带面上存在两个横跨第一布里渊区的超宽平坦区域. 时域有限差分法模拟结果表明, 利用超宽平坦区域的特性, 可同时实现带宽达187 nm (以1550 nm为中心波长)、准直入射角度几乎覆盖0°–90°的宽带全角自准直光传输.
    • 基金项目: 国家自然科学基金(批准号: 11247253)、华南理工大学中央高校基本科研业务费(批准号: 2014ZM0079) 和2013年广东省高等学校教学质量与教学改革工程(批准号: N913061a)资助的课题.
    [1]

    Kosaka H, Kawashima T, Tomita A, Notomi M, Tamamura T, Sato T, Kawakami S 1999 Appl. Phys. Lett. 74 1212

    [2]

    Witzens J, Loncar M, Scherer A 2002 IEEE J. Sel. Top. Quantum Electron. 8 1246

    [3]

    Fan C Z, Wang J Q, He J N, Ding P, Liang E J 2013 Chin. Phys. B 22 074211

    [4]

    Zhang H F, Liu S B, Li B X 2014 Ann. Phys. 347 110

    [5]

    Liu H, Liu D, Zhao H, Gao Y H 2013 Acta Phys. Sin. 62 194208 (in Chinese) [刘会, 刘丹, 赵恒, 高义华 2013 物理学报 62 194208]

    [6]

    Yue Q Y, Kong F M, Li K, Zhao J 2012 Acta Phys. Sin. 61 208502 (in Chinese) [岳庆炀, 孔凡敏, 李康, 赵佳 2012 物理学报 61 208502]

    [7]

    Wang X, Gao W S, Hung J, Tam W Y 2014 Appl. Opt. 53 2425

    [8]

    Liang W Y, Chen W H, Yin M, Yin C P 2014 J. Opt. 16 065101

    [9]

    Li W, Zhang X, Lin X, Jiang X 2014 Opt. Lett. 39 4486

    [10]

    Liang W Y, Liu X M, Yin M 2013 J. Phys. D: Appl. Phys. 46 495109

    [11]

    Jin L, Zhu Q Y, Fu Y Q 2013 Chin. Phys. B 22 094102

    [12]

    Jia T, Baba M, Suzuki M, Ganeev R A, Kuroda H, Qiu J, Wang X, Li R, Xu Z 2008 Opt. Express 16 1874

    [13]

    Zhang X, Chen Y H 2012 J. Opt. Soc. Am. B 29 2704

    [14]

    Lawrence F J, de Sterke C M, Botten L C, McPhedran R C, Dossou K B 2013 Adv. Opt. Photon. 5 385

    [15]

    Park J M, Lee S G, Park H Y, Kim J E 2008 Opt. Express 16 20354

    [16]

    Jiang L Y, Wu H, Li X Y 2014 J. Opt. 43 108

    [17]

    Chigrin D N, Enoch S, Sotomayor Torres C M, Tayeb G 2003 Opt. Express 11 1203

    [18]

    Xu Y, Chen X J, Lan S, Guo Q, Hu W, Wu L J 2008 J. Opt. A: Pure Appl. Opt. 10 085201

    [19]

    Wu Z H, Xie K, Yang H J, Jiang P, He X J 2012 J. Opt. 14 015002

    [20]

    Gan L, Qin F, Li Z Y 2012 Opt. Lett. 37 2412

    [21]

    Aghadjani M, Shahabadi M 2013 J. Opt. Soc. Am. B 30 3140

    [22]

    Zhao D, Zhou C, Gong Q, Jiang X 2008 J. Phys. D: Appl. Phys. 41 115108

    [23]

    Wang Y, Wang H, Xue Q, Zheng W 2012 Opt. Express 20 12111

    [24]

    Cheng L F, Ren C, Wang P, Feng S 2014 Acta Phys. Sin. 63 154213 (in Chinese) [程立锋, 任承, 王萍, 冯帅 2014 物理学报 63 154213]

    [25]

    Johnson S G, Joannopoulos J D 2001 Opt. Express 8 173

    [26]

    Joannopoulos J D, Jonhson S G, Winn J N, Meade R D 2008 Photonic Crystals: Molding the Flow of Light (2nd Ed.) (Princeton NJ: Princeton University Press

    [27]

    Foteinopoulou S, Soukoulis C M 2003 Phys. Rev. B 67 235107

    [28]

    Hsieh M L, Lan Y S 2008 J. Vac. Sci. Technol. B 26 914

    [29]

    Taflove A, Hagness S C 2000 Computational Electrodynamics: The Finite-Difference Time-Domain Method (2nd Ed.) (Boston, MA: Artech House) chapter 3

    [30]

    Witzens J, Hochberg M, Baehr-Jones T, Scherer A 2004 Phsy. Rev. E 69 046609

  • [1]

    Kosaka H, Kawashima T, Tomita A, Notomi M, Tamamura T, Sato T, Kawakami S 1999 Appl. Phys. Lett. 74 1212

    [2]

    Witzens J, Loncar M, Scherer A 2002 IEEE J. Sel. Top. Quantum Electron. 8 1246

    [3]

    Fan C Z, Wang J Q, He J N, Ding P, Liang E J 2013 Chin. Phys. B 22 074211

    [4]

    Zhang H F, Liu S B, Li B X 2014 Ann. Phys. 347 110

    [5]

    Liu H, Liu D, Zhao H, Gao Y H 2013 Acta Phys. Sin. 62 194208 (in Chinese) [刘会, 刘丹, 赵恒, 高义华 2013 物理学报 62 194208]

    [6]

    Yue Q Y, Kong F M, Li K, Zhao J 2012 Acta Phys. Sin. 61 208502 (in Chinese) [岳庆炀, 孔凡敏, 李康, 赵佳 2012 物理学报 61 208502]

    [7]

    Wang X, Gao W S, Hung J, Tam W Y 2014 Appl. Opt. 53 2425

    [8]

    Liang W Y, Chen W H, Yin M, Yin C P 2014 J. Opt. 16 065101

    [9]

    Li W, Zhang X, Lin X, Jiang X 2014 Opt. Lett. 39 4486

    [10]

    Liang W Y, Liu X M, Yin M 2013 J. Phys. D: Appl. Phys. 46 495109

    [11]

    Jin L, Zhu Q Y, Fu Y Q 2013 Chin. Phys. B 22 094102

    [12]

    Jia T, Baba M, Suzuki M, Ganeev R A, Kuroda H, Qiu J, Wang X, Li R, Xu Z 2008 Opt. Express 16 1874

    [13]

    Zhang X, Chen Y H 2012 J. Opt. Soc. Am. B 29 2704

    [14]

    Lawrence F J, de Sterke C M, Botten L C, McPhedran R C, Dossou K B 2013 Adv. Opt. Photon. 5 385

    [15]

    Park J M, Lee S G, Park H Y, Kim J E 2008 Opt. Express 16 20354

    [16]

    Jiang L Y, Wu H, Li X Y 2014 J. Opt. 43 108

    [17]

    Chigrin D N, Enoch S, Sotomayor Torres C M, Tayeb G 2003 Opt. Express 11 1203

    [18]

    Xu Y, Chen X J, Lan S, Guo Q, Hu W, Wu L J 2008 J. Opt. A: Pure Appl. Opt. 10 085201

    [19]

    Wu Z H, Xie K, Yang H J, Jiang P, He X J 2012 J. Opt. 14 015002

    [20]

    Gan L, Qin F, Li Z Y 2012 Opt. Lett. 37 2412

    [21]

    Aghadjani M, Shahabadi M 2013 J. Opt. Soc. Am. B 30 3140

    [22]

    Zhao D, Zhou C, Gong Q, Jiang X 2008 J. Phys. D: Appl. Phys. 41 115108

    [23]

    Wang Y, Wang H, Xue Q, Zheng W 2012 Opt. Express 20 12111

    [24]

    Cheng L F, Ren C, Wang P, Feng S 2014 Acta Phys. Sin. 63 154213 (in Chinese) [程立锋, 任承, 王萍, 冯帅 2014 物理学报 63 154213]

    [25]

    Johnson S G, Joannopoulos J D 2001 Opt. Express 8 173

    [26]

    Joannopoulos J D, Jonhson S G, Winn J N, Meade R D 2008 Photonic Crystals: Molding the Flow of Light (2nd Ed.) (Princeton NJ: Princeton University Press

    [27]

    Foteinopoulou S, Soukoulis C M 2003 Phys. Rev. B 67 235107

    [28]

    Hsieh M L, Lan Y S 2008 J. Vac. Sci. Technol. B 26 914

    [29]

    Taflove A, Hagness S C 2000 Computational Electrodynamics: The Finite-Difference Time-Domain Method (2nd Ed.) (Boston, MA: Artech House) chapter 3

    [30]

    Witzens J, Hochberg M, Baehr-Jones T, Scherer A 2004 Phsy. Rev. E 69 046609

  • [1] 刘幸, 郭红梅, 付饶, 范浩然, 冯帅, 陈笑, 李传波, 王义全. 基于环形微腔的多频段三角晶格光子晶体耦合腔波导光学传输特性. 物理学报, 2018, 67(23): 234201. doi: 10.7498/aps.67.20181579
    [2] 吕晓龙, 陆浩然, 郭云胜. Mie谐振耦合的亚波长金属孔宽带高透射传输. 物理学报, 2020, (): . doi: 10.7498/aps.69.20201121
    [3] 姜其畅, 刘超, 刘晋宏, 张俊香. 原子系统中远失谐脉冲光束对的群速度操控. 物理学报, 2015, 64(9): 094208. doi: 10.7498/aps.64.094208
    [4] 何国华, 张俊祥, 叶莉华, 崔一平, 李振华, 来建成, 贺安之. 一种新型有机染料的宽带双光子吸收和光限幅特性的研究. 物理学报, 2003, 52(8): 1929-1933. doi: 10.7498/aps.52.1929
    [5] 张建心, 屈道宽, 冯帅, 王义全, 王传奎. 微腔旋转对耦合腔光波导群速度的影响. 物理学报, 2009, 58(12): 8339-8344. doi: 10.7498/aps.58.8339
    [6] 沈宏君, 田慧平, 纪越峰. 一种新型无色散慢光光子晶体薄板波导. 物理学报, 2010, 59(4): 2820-2826. doi: 10.7498/aps.59.2820
    [7] 杨红卫, 孟珊珊, 高冉冉, 彭硕. 光子晶体传输特性的时域精细积分法分析. 物理学报, 2017, 66(8): 084101. doi: 10.7498/aps.66.084101
    [8] 温燮文, 董建文, 汪河洲. 无规结构全角高反一维光子晶体的场强分布. 物理学报, 2006, 55(6): 2781-2784. doi: 10.7498/aps.55.2781
    [9] 厉以宇, 顾培夫, 李明宇, 张锦龙, 刘 旭. 波状结构二维光子晶体的自准直特性及亚波长成像的研究. 物理学报, 2006, 55(5): 2596-2600. doi: 10.7498/aps.55.2596
    [10] 童星, 韩奎, 沈晓鹏, 吴琼华, 周菲, 葛阳, 胡晓娟. 基于光子晶体自准直环形谐振腔的全光均分束器. 物理学报, 2011, 60(6): 064217. doi: 10.7498/aps.60.064217
    [11] 韩奎, 王娟娟, 周菲, 沈晓鹏, 沈义峰, 吴玉喜, 唐刚. 基于光子晶体的Kretschmann结构中自准直光束的Goos-Hänchen位移研究. 物理学报, 2013, 62(4): 044221. doi: 10.7498/aps.62.044221
    [12] 左依凡, 李培丽, 栾开智, 王磊. 基于自准直效应的光子晶体异质结偏振分束器. 物理学报, 2018, 67(3): 034204. doi: 10.7498/aps.67.20171815
    [13] 苏安, 高英俊. 双重势垒一维光子晶体量子阱的光传输特性研究. 物理学报, 2012, 61(23): 234208. doi: 10.7498/aps.61.234208
    [14] 沈晓鹏, 韩 奎, 李海鹏, 沈义峰, 王子煜. 光子晶体自准直光束偏振分束器. 物理学报, 2008, 57(3): 1737-1741. doi: 10.7498/aps.57.1737
    [15] 童元伟, 张冶文, 赫 丽, 李宏强, 陈 鸿. 用传输矩阵法研究微波波段准一维同轴光子晶体能隙结构. 物理学报, 2006, 55(2): 935-940. doi: 10.7498/aps.55.935
    [16] 武敏, 费宏明, 林瀚, 赵晓丹, 杨毅彪, 陈智辉. 基于二维六方氮化硼材料的光子晶体非对称传输异质结构设计. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200741
    [17] 沈晓鹏, 韩 奎, 沈义峰, 李海鹏, 肖正伟, 郑 健. 二维光子晶体中与电磁波偏振态无关的自准直. 物理学报, 2006, 55(6): 2760-2764. doi: 10.7498/aps.55.2760
    [18] 韩奎, 王子煜, 沈晓鹏, 吴琼华, 童星, 唐刚, 吴玉喜. 基于光子晶体自准直和带隙效应的马赫-曾德尔干涉仪设计. 物理学报, 2011, 60(4): 044212. doi: 10.7498/aps.60.044212
    [19] 王晓, 陈立潮, 刘艳红, 石云龙, 孙勇. 纵模对光子晶体中类狄拉克点传输特性的影响. 物理学报, 2015, 64(17): 174206. doi: 10.7498/aps.64.174206
    [20] 周鹏, 游海洋, 王松有, 李合印, 杨月梅, 陈良尧. 金属插层对一维光子晶体中光传输特性的影响. 物理学报, 2002, 51(10): 2276-2280. doi: 10.7498/aps.51.2276
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1009
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-25
  • 修回日期:  2014-10-02
  • 刊出日期:  2015-03-05

低对称性光子晶体超宽带全角自准直传输的机理研究

  • 1. 华南理工大学物理与光电学院, 广州 510640
    基金项目: 

    国家自然科学基金(批准号: 11247253)、华南理工大学中央高校基本科研业务费(批准号: 2014ZM0079) 和2013年广东省高等学校教学质量与教学改革工程(批准号: N913061a)资助的课题.

摘要: 提出了一种低对称性椭圆介质柱二维光子晶体结构, 利用平面波展开法研究了该结构在第一布里渊区的能带特性. 讨论了全角自准直效应的物理机制及椭圆柱结构参数对其带宽的影响, 明确给出了自准直传播模式的存在判据. 研究发现, 自准直模式几乎覆盖了TE偏振的整个第四能带, 而且该能带面上存在两个横跨第一布里渊区的超宽平坦区域. 时域有限差分法模拟结果表明, 利用超宽平坦区域的特性, 可同时实现带宽达187 nm (以1550 nm为中心波长)、准直入射角度几乎覆盖0°–90°的宽带全角自准直光传输.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回