搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

哈斯勒合金Ni-Fe-Mn-In的马氏体相变与磁特性研究

张元磊 李哲 徐坤 敬超

哈斯勒合金Ni-Fe-Mn-In的马氏体相变与磁特性研究

张元磊, 李哲, 徐坤, 敬超
PDF
导出引用
导出核心图
  • 利用电弧炉制备了Ni50-xFexMn37In13(x=1, 3, 5) 多晶样品, 通过结构和磁性测量, 系统分析了Ni50-xFexMn37In13(x=1, 3, 5)样品的晶体结构和马氏体相变. 结果表明, 三样品在室温下呈现出了不同的晶体结构. 同时, 随着Fe含量的增加, 样品的马氏体相变温度急剧下降, 而铁磁性却逐渐增强. 研究了Fe3和Fe5样品在反马氏体相变过程中的磁电阻和磁卡效应. 在外加3 T的磁场下, 两样品在反马氏体相变区域所表现出的磁电阻效应分别约为-46%和-15%, 而等温熵变则约为6 J·kg-1·K-1和9.5 J·kg-1·K-1. 然而, 伴随非常宽的相变温跨和较小的磁滞损失, Fe3样品在反马氏体相变区域的净制冷量达到96 J·kg-1.
    • 基金项目: 国家自然科学基金(批准号: 11364035, 11404186, 51371111)、上海市科委基础研究重点计划(批准号: 13JC1402400)、云南省科技厅应用基础研究面上项目(批准号: 2013FZ110)和曲靖师范学院创新团队研究计划(批准号: TD201301)资助的课题.
    [1]

    Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K, Oikawa K 2004 Appl. Phys. Lett. 85 4358

    [2]

    Planes A, Mañosa L, Acet M 2009 J. Phys. : Condens. Matter 21 233201

    [3]

    Wang D H, Han Z D, Xuan H C, Ma S C, Chen S Y, Zhang C L, Du Y W 2013 Chin. Phys. B 22 077506

    [4]

    Hu F X, Shen B G, Sun J R 2013 Chin. Phys. B 22 037505

    [5]

    Khan M, Dubenko I, Stadler S, Ali N 2007 Appl. Phys. Lett. 91 072510

    [6]

    Li Z, Jing C, Chen J P, Yuan S J, Cao S X, Zhang J C 2007 Appl. Phys. Lett. 91 112505

    [7]

    Wang B M, Liu Y, Ren P, Xia B, Ruan K B, Yi J B, Ding J, Li X G, Wang L 2011 Phys. Rev. Lett. 106 077203

    [8]

    Liao P, Jing C, Wang X L, Yang Y J, Zheng D, Li Z, Kang B J, Deng D M, Cao S X, Zhang J C, Lu B 2014 Appl. Phys. Lett. 104 092410

    [9]

    Chatterjee S, Giri S, De S K, Majumdar S 2009 Phys. Rev. B 79 092401

    [10]

    Ma L, Wang W H, Lu J B, Li J Q, Zhen C M, Hou D L, Wu G H 2011 Appl. Phys. Lett. 99 182507

    [11]

    Lakhani A, Banerjee A, Chaddah P, Chen X, Ramanujan R V 2012 J. Phys. : Condens. Matter 24 386004

    [12]

    Oikawa K, Ito W, Imano Y, Sutou Y, Kainuma R, Ishida K, Okamoto S, Kitakami O, Kanomata T 2006 Appl. Phys. Lett. 88 122507

    [13]

    Koyama K, Watanabe K, Kanomata T, Kaimuma R, Oikawa K, Ishida K 2006 Appl. Phys. Lett. 88 132505

    [14]

    Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomota T, Ishida K 2006 Nature 439 957

    [15]

    Li Z, Jing C, Zhang H L, Yu D H, Chen L, Kang B J, Cao S X, Zhang J C 2010 J. Appl. Phys. 108 113908

    [16]

    Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Mañosa L, Planes A 2005 Nat. Mater. 4 450

    [17]

    Liu J, Gottschall T, Skokov K P, Moore J D, Gutfleisch O 2012 Nat. Mater. 11 620

    [18]

    Jing C, Li Z, Chen J P, Lu Y M, Cao S X, Zhang J C 2008 Acta Phys. Sin. 57 3780 (in Chinese) [敬超, 李哲, 陈继萍, 鲁玉明, 曹世勋, 张金仓 2008 物理学报 57 3780]

    [19]

    Li Z, Jing C, Zhang H L, Cao S X, Zhang J C 2011 Chin. Phys. B 20 047502

    [20]

    Yu S Y, Ma L, Liu G D, Liu Z H, Chen J L, Cao Z X, Wu G H, Zhang B, Zhang X X 2007 Appl. Phys. Lett. 90 242501

    [21]

    Jing C, Yang Y J, Li Z, Yu D H, Wang X L, Kang B J, Cao S X, Zhang J C, Zhu J, Lu B 2013 J. Appl. Phys. 113 173902

    [22]

    Ito W, Xu X, Umetsu R, Kanomata T, Ishida K, Kainuma R 2010 Appl. Phys. Lett. 97 242512

    [23]

    Wu Z, Liu Z, Yang H, Liu Y, Wu G 2011 Appl. Phys. Lett. 98 061904

    [24]

    Cong D Y, Roth S, Schultz L 2012 Acta Mater. 60 5335

    [25]

    Jing C, Wang X L, Liao P, Li Z, Yang Y J, Kang B J, Deng D M, Cao S X, Zhang J C, Zhu J 2013 J. Appl. Phys. 114 063907

    [26]

    Chernenko V A 1999 Scripta Mater. 40 523

    [27]

    Ye M, Kimura A, Miura Y, Shirai M, Cui Y T, Shimada K, Namatame H, Taniguchi M, Ueda S, Kobayashi K, Kainuma R, Shishido T, Fukushima K, Kanomata T 2010 Phys. Rev. Lett. 104 176401

    [28]

    Khan M, Jung J, Stoyko S S, Mar A, Quetz A, Samanta T, Dubenko I, Ali N, Stadler S, Chow K H 2012 Appl. Phys. Lett. 100 172403

    [29]

    Stager C V, Campbell C C M 1978 Can. J. Phys. 56 674

    [30]

    Liu Z H, Wu Z G, Ma X Q, Wang W H, Liu Y, Wu G H 2011 J. Appl. Phys. 110 013916

    [31]

    Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Mañosa L, Planes A, Suard E, Ouladdiaf B 2007 Phys. Rev. B 75 104414

  • [1]

    Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K, Oikawa K 2004 Appl. Phys. Lett. 85 4358

    [2]

    Planes A, Mañosa L, Acet M 2009 J. Phys. : Condens. Matter 21 233201

    [3]

    Wang D H, Han Z D, Xuan H C, Ma S C, Chen S Y, Zhang C L, Du Y W 2013 Chin. Phys. B 22 077506

    [4]

    Hu F X, Shen B G, Sun J R 2013 Chin. Phys. B 22 037505

    [5]

    Khan M, Dubenko I, Stadler S, Ali N 2007 Appl. Phys. Lett. 91 072510

    [6]

    Li Z, Jing C, Chen J P, Yuan S J, Cao S X, Zhang J C 2007 Appl. Phys. Lett. 91 112505

    [7]

    Wang B M, Liu Y, Ren P, Xia B, Ruan K B, Yi J B, Ding J, Li X G, Wang L 2011 Phys. Rev. Lett. 106 077203

    [8]

    Liao P, Jing C, Wang X L, Yang Y J, Zheng D, Li Z, Kang B J, Deng D M, Cao S X, Zhang J C, Lu B 2014 Appl. Phys. Lett. 104 092410

    [9]

    Chatterjee S, Giri S, De S K, Majumdar S 2009 Phys. Rev. B 79 092401

    [10]

    Ma L, Wang W H, Lu J B, Li J Q, Zhen C M, Hou D L, Wu G H 2011 Appl. Phys. Lett. 99 182507

    [11]

    Lakhani A, Banerjee A, Chaddah P, Chen X, Ramanujan R V 2012 J. Phys. : Condens. Matter 24 386004

    [12]

    Oikawa K, Ito W, Imano Y, Sutou Y, Kainuma R, Ishida K, Okamoto S, Kitakami O, Kanomata T 2006 Appl. Phys. Lett. 88 122507

    [13]

    Koyama K, Watanabe K, Kanomata T, Kaimuma R, Oikawa K, Ishida K 2006 Appl. Phys. Lett. 88 132505

    [14]

    Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomota T, Ishida K 2006 Nature 439 957

    [15]

    Li Z, Jing C, Zhang H L, Yu D H, Chen L, Kang B J, Cao S X, Zhang J C 2010 J. Appl. Phys. 108 113908

    [16]

    Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Mañosa L, Planes A 2005 Nat. Mater. 4 450

    [17]

    Liu J, Gottschall T, Skokov K P, Moore J D, Gutfleisch O 2012 Nat. Mater. 11 620

    [18]

    Jing C, Li Z, Chen J P, Lu Y M, Cao S X, Zhang J C 2008 Acta Phys. Sin. 57 3780 (in Chinese) [敬超, 李哲, 陈继萍, 鲁玉明, 曹世勋, 张金仓 2008 物理学报 57 3780]

    [19]

    Li Z, Jing C, Zhang H L, Cao S X, Zhang J C 2011 Chin. Phys. B 20 047502

    [20]

    Yu S Y, Ma L, Liu G D, Liu Z H, Chen J L, Cao Z X, Wu G H, Zhang B, Zhang X X 2007 Appl. Phys. Lett. 90 242501

    [21]

    Jing C, Yang Y J, Li Z, Yu D H, Wang X L, Kang B J, Cao S X, Zhang J C, Zhu J, Lu B 2013 J. Appl. Phys. 113 173902

    [22]

    Ito W, Xu X, Umetsu R, Kanomata T, Ishida K, Kainuma R 2010 Appl. Phys. Lett. 97 242512

    [23]

    Wu Z, Liu Z, Yang H, Liu Y, Wu G 2011 Appl. Phys. Lett. 98 061904

    [24]

    Cong D Y, Roth S, Schultz L 2012 Acta Mater. 60 5335

    [25]

    Jing C, Wang X L, Liao P, Li Z, Yang Y J, Kang B J, Deng D M, Cao S X, Zhang J C, Zhu J 2013 J. Appl. Phys. 114 063907

    [26]

    Chernenko V A 1999 Scripta Mater. 40 523

    [27]

    Ye M, Kimura A, Miura Y, Shirai M, Cui Y T, Shimada K, Namatame H, Taniguchi M, Ueda S, Kobayashi K, Kainuma R, Shishido T, Fukushima K, Kanomata T 2010 Phys. Rev. Lett. 104 176401

    [28]

    Khan M, Jung J, Stoyko S S, Mar A, Quetz A, Samanta T, Dubenko I, Ali N, Stadler S, Chow K H 2012 Appl. Phys. Lett. 100 172403

    [29]

    Stager C V, Campbell C C M 1978 Can. J. Phys. 56 674

    [30]

    Liu Z H, Wu Z G, Ma X Q, Wang W H, Liu Y, Wu G H 2011 J. Appl. Phys. 110 013916

    [31]

    Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Mañosa L, Planes A, Suard E, Ouladdiaf B 2007 Phys. Rev. B 75 104414

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1349
  • PDF下载量:  5738
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-26
  • 修回日期:  2014-09-25
  • 刊出日期:  2015-03-05

哈斯勒合金Ni-Fe-Mn-In的马氏体相变与磁特性研究

  • 1. 曲靖师范学院物理与电子工程学院, 曲靖 655011;
  • 2. 云南省高校先进功能材料与低维材料重点实验室, 曲靖 655011;
  • 3. 上海大学物理系, 上海 200444
    基金项目: 

    国家自然科学基金(批准号: 11364035, 11404186, 51371111)、上海市科委基础研究重点计划(批准号: 13JC1402400)、云南省科技厅应用基础研究面上项目(批准号: 2013FZ110)和曲靖师范学院创新团队研究计划(批准号: TD201301)资助的课题.

摘要: 利用电弧炉制备了Ni50-xFexMn37In13(x=1, 3, 5) 多晶样品, 通过结构和磁性测量, 系统分析了Ni50-xFexMn37In13(x=1, 3, 5)样品的晶体结构和马氏体相变. 结果表明, 三样品在室温下呈现出了不同的晶体结构. 同时, 随着Fe含量的增加, 样品的马氏体相变温度急剧下降, 而铁磁性却逐渐增强. 研究了Fe3和Fe5样品在反马氏体相变过程中的磁电阻和磁卡效应. 在外加3 T的磁场下, 两样品在反马氏体相变区域所表现出的磁电阻效应分别约为-46%和-15%, 而等温熵变则约为6 J·kg-1·K-1和9.5 J·kg-1·K-1. 然而, 伴随非常宽的相变温跨和较小的磁滞损失, Fe3样品在反马氏体相变区域的净制冷量达到96 J·kg-1.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回