搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超强圆偏振激光直接加速产生超高能量电子束

尹传磊 王伟民 廖国前 李梦超 李玉同 张杰

超强圆偏振激光直接加速产生超高能量电子束

尹传磊, 王伟民, 廖国前, 李梦超, 李玉同, 张杰
PDF
导出引用
导出核心图
  • 研究表明, 峰值强度为1022–1025 W/cm2量级的圆偏振激光脉冲的有质动力场可以直接加速并产生GeV–TeV的单能电子束, 其中被加速电子的能量与激光脉冲的峰值强度成线性定标关系. 为了获得更高能量的电子束, 通过对一维解析模型的分析得到: 如果电子束在激光传播的方向上具一个初始能量E0, 那么这种线性的定标关系可以被打破, 被加速电子束最终的能量可以被放大E0倍. 这是由于具有一定初始能量的电子束不容易被激光脉冲抛在后面, 进而获得更高的加速距离. 二维粒子模拟结果显示: 当电子束的初始能量E0为MeV量级时这个方法是有效的, 而当E0过大时这个方法失效. 这是因为当电子的加速距离远大于激光脉冲的瑞利长度时, 激光强度的衰减使得电子束的加速错过了最佳加速场.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2013CBA01501)和国家自然科学基金(批准号: 11105217, 11375261, 11375262)资助的课题.
    [1]

    DesRosiers C, Moskvin V, Bielajew A F, Papiez L 2000 Phys. Med. Biol. 45 1781

    [2]

    Glinec Y Y, Faure J, Malka V V, Fuchs T, Szymanowski H, Oelfke U 2006 Med. Phys. 33 155

    [3]

    Glinec Y, Faure J, Le Dain L, Darbon S, Hosokai T, Santos J J, Lefebvre E, Rousseau J P, Burgy F, Mercier B, Malka V 2005 Phys. Rev. Lett. 94 025003

    [4]

    Kneip S, McGuffey C, Martins J L, Martins S F, Bellei C, Chvykov V, Dollar F, Fonseca R, Huntington C, Kalintchenko G, Maksimchuk A, Mangles S P D, Matsuoka T, Nagel S R, Palmer C A J, Schreiber J, Phuoc K T, Thomas A G R, Yanovsky V, Silva L O, Krushelnick K, Najmudin Z 2010 Nature Phys. 6 980

    [5]

    Cipiccia S, Islam M R, Ersfeld B, Shanks R P, Brunetti E, Vieux G, Yang X, Issac R C, Wiggins S M, Welsh G H, Anania M P, Maneuski D, Montgomery R, Smith G, Hoek M, Hamilton D J, Lemos N R C, Symes D, Rajeev P P, Shea V O, Dias J M, Jaroszynski D A 2011 Nature Phys. 7 867

    [6]

    Phuoc K T, Corde S, Thaury C, Malka V, Tafzi A, Goddet J P, Shah R C, Sebban S, Rousse A 2012 Nature Photon. 6 308

    [7]

    Chen L M, Yan W C, Li D Z, Hu Z D, Zhang L, Wang W M, Hafz N A M, Mao J Y, Huang K, Ma Y, Zhao J R, Ma J L, Li Y T, Lu X, Sheng Z M, Wei Z Y, Gao J, Zhang J 2013 Sci. Report 3 1912

    [8]

    Tan F, Zhu B, Han D, Xin J T, Zhao Z Q, Cao L F, Gu Y Q, Zhang B H 2014 Chin. Phys. B 23 034104

    [9]

    Leemans W P, Geddes C G R, Faure J, Toth C, van Tilborg J, Schroeder C B, Esarey E, Fubiani G, Auerbach D, Marcelis B, Carnahan M A, Kaindl R A, Byrd J, Martin M C 2003 Phys. Rev. Lett. 91 074802

    [10]

    Shen Y, Watanabe T, Arena D A, Kao C C, Murphy J B, Tsang T Y, Wang X J, Carr G L 2007 Phys. Rev. Lett. 99 043901

    [11]

    Wang W M, Kawata S, Sheng Z M, Li Y T, Chen L M, Qian L J, Zhang J 2011 Opt. Lett. 36 2608

    [12]

    Wang W M, Gibbon P, Sheng Z M, Li Y T 2014 Phys. Rev. A 90 023808

    [13]

    Pukhov A, Meyer-ter-vehn J 2002 Appl. Phys. B 74 355

    [14]

    Mangles S P D, Murphy C D, Najmudin Z, Thomas A G R, Collier J L, Dangor A E, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszynski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R, Krushelnick K 2004 Nature 431 535

    [15]

    Geddes C, Toth C, van Tilborg J, Esarey E, Schroeder C, Bruhwiler D, Nieter C, Cary J, Leemans W 2004 Nature 431 538

    [16]

    Faure J, Glinec Y, Pukhov A, Kiselev S, Gordi-enko S, Lefebvre E, Rousseau J, Burgy F, Malka V 2004 Nature 431 541

    [17]

    Lu W, Huang C, Zhou M, Mori W B, Katsouleas T 2006 Phys. Rev. Lett. 96 165002

    [18]

    Lu W, Tzoufras M, Joshi C, Tsung F S, Mori W B, Vieira J, Fonseca R A, Silva L O 2007 Phys. Rev. ST Accel. Beams 10 061301

    [19]

    Faure J, Rechatin C, Norlin A, Lifschitz A, Glinec Y, Malka V 2006 Nature 444 737

    [20]

    Wang W M, Sheng Z M, Zhang J 2008 Appl. Phys. Lett. 93 201502

    [21]

    Hafz N A M, Jeong T M, Choi I W, Lee S K, Pae K H, Kulagin V V, Sung J H, Yu T J, Hong K H, Hosokai T, Cary J R, Ko D K, Lee J 2008 Nature Photon. 2 571

    [22]

    Liu J S, Xia C Q, Wang W T, Lu H Y, Wang C, Deng A H, Li W T, Zhang H, Liang X Y, Leng Y X, Lu X M, Wang C, Wang J Z, Nakajima K, Li R X, Xu Z Z 2011 Phys. Rev. Lett. 107 035001

    [23]

    Leemans W P, Nagler B, Gonsalves A J, Toth C, Nakamura K, Geddes C G R, Esarey E, Schroeder C B, Hooker S M 2006 Nature Phys. 2 696

    [24]

    Leemans W P, Gonsalves A J, Mao H S, Nakamura K, Benedetti C, Schroeder C B, Toth C, Daniels J, Mittelberger D E, Bulanov S S, Vay J L, Geddes C G R, Esarey E 2014 Phys. Rev. Lett. 113 245002

    [25]

    Wang X, Zgadzaj R, Fazel N, Li Z, Yi S A, Zhang X, Henderson W, Chang Y Y, Korzekwa R, Tsai H E, Pai C H, Quevedo H, Dyer G, Gaul E, Martinez M, Bernstein A C, Borger T, Spinks M, Donovan M, Khudik V, Shvets G, Ditmire T, Downer M C 2013 Nature Commun. 4 1988

    [26]

    Wang W M, Sheng Z M, Zeng M, Liu Y, Hu Z D, Kawata S, Zheng C Y, Mori W B, ChenL M, Li Y T, Zhang J 2012 Appl. Phys. Lett. 101 184104

    [27]

    Wang W M, Sheng Z M, Li Y T, Chen L M, Kawata S, Zhang J 2010 Phys. Rev. ST Accel. Beams 13 071301

    [28]

    Heisenberg W, Euler H 1936 Z. Phys. 98 714

    [29]

    Dittrich W, Gies H 2000 Probing the Quantum Vacuum (Berlin: Springer-Verlag)

    [30]

    Sun G Z, Ott E, Lee Y C, Guzdar P 1987 Phys. Fluids 30 526

    [31]

    Borisov A B, Borovskiy A V, Shiryaev O B, Korobkin V V, Prokhorov A M, Solem J C, Luk T S, Boyer K, Rhodes C K 1992 Phys. Rev. A 45 5830

    [32]

    Wang W M, Zheng C Y 2006 Acta Phys. Sin. 55 310 (in Chinese) [王伟民, 郑春阳 2006 物理学报 55 310]

    [33]

    Wang F C, Shen B F, Zhang X M, Li X M, Jin Z Y 2007 Phys. Plasmas 14 083102

    [34]

    Yu W, Bychenkov V, Sentoku Y, Yu M Y, Sheng Z M, Mima K 2000 Phys. Rev. Lett. 85 570

    [35]

    Kulagin V V, Cherepenin V A, Suk H 2004 Phys. Plasmas 11 5239

    [36]

    Wang W M, Sheng Z M, Kawata S, Zheng C Y, Li Y T, Chen L M, Dong Q L, Lu X, Ma J L, Zhang J 2012 J. Plasma Phys. 78 461

    [37]

    Meyer-ter-Vehn J, Pukhov A, Sheng Z M 2001 in: Atoms, Solids, and Plasmas in Super-Intense Laser Fields Edited by Batani D et al. (Norwell MA: Kluwer Academic/Plenum Publishers) pp167-192

    [38]

    Sheng Z M, Mima K, Sentoku Y, Jovanovic M S, Taguchi T, Zhang J, Meyer-ter-Vehn J 2002 Phys. Rev. Lett. 88 055004

    [39]

    Wang W M, Gibbon P, Sheng Z M, Li Y T 2015 Phys. Rev. E 91 013101

  • [1]

    DesRosiers C, Moskvin V, Bielajew A F, Papiez L 2000 Phys. Med. Biol. 45 1781

    [2]

    Glinec Y Y, Faure J, Malka V V, Fuchs T, Szymanowski H, Oelfke U 2006 Med. Phys. 33 155

    [3]

    Glinec Y, Faure J, Le Dain L, Darbon S, Hosokai T, Santos J J, Lefebvre E, Rousseau J P, Burgy F, Mercier B, Malka V 2005 Phys. Rev. Lett. 94 025003

    [4]

    Kneip S, McGuffey C, Martins J L, Martins S F, Bellei C, Chvykov V, Dollar F, Fonseca R, Huntington C, Kalintchenko G, Maksimchuk A, Mangles S P D, Matsuoka T, Nagel S R, Palmer C A J, Schreiber J, Phuoc K T, Thomas A G R, Yanovsky V, Silva L O, Krushelnick K, Najmudin Z 2010 Nature Phys. 6 980

    [5]

    Cipiccia S, Islam M R, Ersfeld B, Shanks R P, Brunetti E, Vieux G, Yang X, Issac R C, Wiggins S M, Welsh G H, Anania M P, Maneuski D, Montgomery R, Smith G, Hoek M, Hamilton D J, Lemos N R C, Symes D, Rajeev P P, Shea V O, Dias J M, Jaroszynski D A 2011 Nature Phys. 7 867

    [6]

    Phuoc K T, Corde S, Thaury C, Malka V, Tafzi A, Goddet J P, Shah R C, Sebban S, Rousse A 2012 Nature Photon. 6 308

    [7]

    Chen L M, Yan W C, Li D Z, Hu Z D, Zhang L, Wang W M, Hafz N A M, Mao J Y, Huang K, Ma Y, Zhao J R, Ma J L, Li Y T, Lu X, Sheng Z M, Wei Z Y, Gao J, Zhang J 2013 Sci. Report 3 1912

    [8]

    Tan F, Zhu B, Han D, Xin J T, Zhao Z Q, Cao L F, Gu Y Q, Zhang B H 2014 Chin. Phys. B 23 034104

    [9]

    Leemans W P, Geddes C G R, Faure J, Toth C, van Tilborg J, Schroeder C B, Esarey E, Fubiani G, Auerbach D, Marcelis B, Carnahan M A, Kaindl R A, Byrd J, Martin M C 2003 Phys. Rev. Lett. 91 074802

    [10]

    Shen Y, Watanabe T, Arena D A, Kao C C, Murphy J B, Tsang T Y, Wang X J, Carr G L 2007 Phys. Rev. Lett. 99 043901

    [11]

    Wang W M, Kawata S, Sheng Z M, Li Y T, Chen L M, Qian L J, Zhang J 2011 Opt. Lett. 36 2608

    [12]

    Wang W M, Gibbon P, Sheng Z M, Li Y T 2014 Phys. Rev. A 90 023808

    [13]

    Pukhov A, Meyer-ter-vehn J 2002 Appl. Phys. B 74 355

    [14]

    Mangles S P D, Murphy C D, Najmudin Z, Thomas A G R, Collier J L, Dangor A E, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszynski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R, Krushelnick K 2004 Nature 431 535

    [15]

    Geddes C, Toth C, van Tilborg J, Esarey E, Schroeder C, Bruhwiler D, Nieter C, Cary J, Leemans W 2004 Nature 431 538

    [16]

    Faure J, Glinec Y, Pukhov A, Kiselev S, Gordi-enko S, Lefebvre E, Rousseau J, Burgy F, Malka V 2004 Nature 431 541

    [17]

    Lu W, Huang C, Zhou M, Mori W B, Katsouleas T 2006 Phys. Rev. Lett. 96 165002

    [18]

    Lu W, Tzoufras M, Joshi C, Tsung F S, Mori W B, Vieira J, Fonseca R A, Silva L O 2007 Phys. Rev. ST Accel. Beams 10 061301

    [19]

    Faure J, Rechatin C, Norlin A, Lifschitz A, Glinec Y, Malka V 2006 Nature 444 737

    [20]

    Wang W M, Sheng Z M, Zhang J 2008 Appl. Phys. Lett. 93 201502

    [21]

    Hafz N A M, Jeong T M, Choi I W, Lee S K, Pae K H, Kulagin V V, Sung J H, Yu T J, Hong K H, Hosokai T, Cary J R, Ko D K, Lee J 2008 Nature Photon. 2 571

    [22]

    Liu J S, Xia C Q, Wang W T, Lu H Y, Wang C, Deng A H, Li W T, Zhang H, Liang X Y, Leng Y X, Lu X M, Wang C, Wang J Z, Nakajima K, Li R X, Xu Z Z 2011 Phys. Rev. Lett. 107 035001

    [23]

    Leemans W P, Nagler B, Gonsalves A J, Toth C, Nakamura K, Geddes C G R, Esarey E, Schroeder C B, Hooker S M 2006 Nature Phys. 2 696

    [24]

    Leemans W P, Gonsalves A J, Mao H S, Nakamura K, Benedetti C, Schroeder C B, Toth C, Daniels J, Mittelberger D E, Bulanov S S, Vay J L, Geddes C G R, Esarey E 2014 Phys. Rev. Lett. 113 245002

    [25]

    Wang X, Zgadzaj R, Fazel N, Li Z, Yi S A, Zhang X, Henderson W, Chang Y Y, Korzekwa R, Tsai H E, Pai C H, Quevedo H, Dyer G, Gaul E, Martinez M, Bernstein A C, Borger T, Spinks M, Donovan M, Khudik V, Shvets G, Ditmire T, Downer M C 2013 Nature Commun. 4 1988

    [26]

    Wang W M, Sheng Z M, Zeng M, Liu Y, Hu Z D, Kawata S, Zheng C Y, Mori W B, ChenL M, Li Y T, Zhang J 2012 Appl. Phys. Lett. 101 184104

    [27]

    Wang W M, Sheng Z M, Li Y T, Chen L M, Kawata S, Zhang J 2010 Phys. Rev. ST Accel. Beams 13 071301

    [28]

    Heisenberg W, Euler H 1936 Z. Phys. 98 714

    [29]

    Dittrich W, Gies H 2000 Probing the Quantum Vacuum (Berlin: Springer-Verlag)

    [30]

    Sun G Z, Ott E, Lee Y C, Guzdar P 1987 Phys. Fluids 30 526

    [31]

    Borisov A B, Borovskiy A V, Shiryaev O B, Korobkin V V, Prokhorov A M, Solem J C, Luk T S, Boyer K, Rhodes C K 1992 Phys. Rev. A 45 5830

    [32]

    Wang W M, Zheng C Y 2006 Acta Phys. Sin. 55 310 (in Chinese) [王伟民, 郑春阳 2006 物理学报 55 310]

    [33]

    Wang F C, Shen B F, Zhang X M, Li X M, Jin Z Y 2007 Phys. Plasmas 14 083102

    [34]

    Yu W, Bychenkov V, Sentoku Y, Yu M Y, Sheng Z M, Mima K 2000 Phys. Rev. Lett. 85 570

    [35]

    Kulagin V V, Cherepenin V A, Suk H 2004 Phys. Plasmas 11 5239

    [36]

    Wang W M, Sheng Z M, Kawata S, Zheng C Y, Li Y T, Chen L M, Dong Q L, Lu X, Ma J L, Zhang J 2012 J. Plasma Phys. 78 461

    [37]

    Meyer-ter-Vehn J, Pukhov A, Sheng Z M 2001 in: Atoms, Solids, and Plasmas in Super-Intense Laser Fields Edited by Batani D et al. (Norwell MA: Kluwer Academic/Plenum Publishers) pp167-192

    [38]

    Sheng Z M, Mima K, Sentoku Y, Jovanovic M S, Taguchi T, Zhang J, Meyer-ter-Vehn J 2002 Phys. Rev. Lett. 88 055004

    [39]

    Wang W M, Gibbon P, Sheng Z M, Li Y T 2015 Phys. Rev. E 91 013101

  • [1] 朱存远, 李朝刚, 方泉, 汪茂胜, 彭雪城, 黄万霞. 用久期微绕理论将弹簧振子模型退化为耦合模理论. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191505
    [2] 翁明, 谢少毅, 殷明, 曹猛. 介质材料二次电子发射特性对微波击穿的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200026
    [3] 刘乃漳, 张雪冰, 姚若河. AlGaN/GaN 高电子迁移率器件外部边缘电容的物理模型. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191931
    [4] 罗端, 惠丹丹, 温文龙, 李立立, 辛丽伟, 钟梓源, 吉超, 陈萍, 何凯, 王兴, 田进寿. 超紧凑型飞秒电子衍射仪的设计. 物理学报, 2020, 69(5): 052901. doi: 10.7498/aps.69.20191157
    [5] 方文玉, 张鹏程, 赵军, 康文斌. H, F修饰单层GeTe的电子结构与光催化性质. 物理学报, 2020, 69(5): 056301. doi: 10.7498/aps.69.20191391
    [6] 王琳, 魏来, 王正汹. 垂直磁重联平面的驱动流对磁岛链影响的模拟. 物理学报, 2020, 69(5): 059401. doi: 10.7498/aps.69.20191612
    [7] 蒋涛, 任金莲, 蒋戎戎, 陆伟刚. 基于局部加密纯无网格法非线性Cahn-Hilliard方程的模拟. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191829
    [8] 周峰, 蔡宇, 邹德峰, 胡丁桐, 张亚静, 宋有建, 胡明列. 钛宝石飞秒激光器中孤子分子的内部动态探测. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191989
    [9] 罗菊, 韩敬华. 激光等离子体去除微纳颗粒的热力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191933
    [10] 刘家合, 鲁佳哲, 雷俊杰, 高勋, 林景全. 气体压强对纳秒激光诱导空气等离子体特性的影响. 物理学报, 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [11] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞. 高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响. 物理学报, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [12] 刘厚通, 毛敏娟. 一种无需定标的地基激光雷达气溶胶消光系数精确反演方法. 物理学报, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [13] 周旭聪, 石尚, 李飞, 孟庆田, 王兵兵. 利用双色激光场下域上电离谱鉴别H32+ 两种不同分子构型. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200013
    [14] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军. 高功率垂直外腔面发射半导体激光器增益设计及制备. 物理学报, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [15] 张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞. 14 nm FinFET和65 nm平面工艺静态随机存取存储器中子单粒子翻转对比. 物理学报, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
    [16] 卢超, 陈伟, 罗尹虹, 丁李利, 王勋, 赵雯, 郭晓强, 李赛. 纳米体硅鳍形场效应晶体管单粒子瞬态中的源漏导通现象研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191896
  • 引用本文:
    Citation:
计量
  • 文章访问数:  384
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-05
  • 修回日期:  2015-01-19
  • 刊出日期:  2015-07-20

超强圆偏振激光直接加速产生超高能量电子束

  • 1. 中国科学院物理研究所, 北京凝聚态物理国家实验室, 北京 100190
    基金项目: 

    国家重点基础研究发展计划(批准号: 2013CBA01501)和国家自然科学基金(批准号: 11105217, 11375261, 11375262)资助的课题.

摘要: 研究表明, 峰值强度为1022–1025 W/cm2量级的圆偏振激光脉冲的有质动力场可以直接加速并产生GeV–TeV的单能电子束, 其中被加速电子的能量与激光脉冲的峰值强度成线性定标关系. 为了获得更高能量的电子束, 通过对一维解析模型的分析得到: 如果电子束在激光传播的方向上具一个初始能量E0, 那么这种线性的定标关系可以被打破, 被加速电子束最终的能量可以被放大E0倍. 这是由于具有一定初始能量的电子束不容易被激光脉冲抛在后面, 进而获得更高的加速距离. 二维粒子模拟结果显示: 当电子束的初始能量E0为MeV量级时这个方法是有效的, 而当E0过大时这个方法失效. 这是因为当电子的加速距离远大于激光脉冲的瑞利长度时, 激光强度的衰减使得电子束的加速错过了最佳加速场.

English Abstract

参考文献 (39)

目录

    /

    返回文章
    返回