搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔金属薄膜阻尼减振微观机理研究

姜文全 杜广煜 巴德纯 杨帆

多孔金属薄膜阻尼减振微观机理研究

姜文全, 杜广煜, 巴德纯, 杨帆
PDF
导出引用
导出核心图
  • 研究了多孔金属薄膜的阻尼性能和微观机理. 采用分子动力学方法及扫描电镜(SEM) 原位观察实验手段对多孔金属薄膜阻尼进行研究, 得出金属薄膜应变滞后于应力周期性变化以及弹性势能周期性衰减的规律, 并通过应变滞后应力的时间差求得损耗因子; 从微观结构上可看出, 在薄膜孔缺陷附近\langle110angle晶向上经历了位错产生、 并且位错呈阶梯状向前发射的变化; 在SEM原位拉伸、卸载实验中观察到有微裂纹的萌生、斜向阶梯扩展、收缩及消失的周期过程. 结果表明: 在周期载荷作用下, 多孔金属薄膜的孔缺陷附近产生的位错可以挣脱开弱钉扎点并限制在强钉扎点上, 由于位错的变化及附近晶界间的相对滑动产生内摩擦, 消耗了系统的部分弹性势能, 引起金属薄膜的阻尼减振效应, 从而揭示了多孔金属涂层阻尼产生的微观机理.
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 51005043)、 中央高校基本科研业务费专项资金(批准号: N130403012, N140301001)和高等学校博士学科点专项科研基金(批准号: 20120042110031)资助的课题.
    [1]

    Tian Y, Huang L, Luo M K 2013 Acta Phys. Sin. 62 050502 (in Chinese) [田艳, 黄丽, 罗懋康 2013 物理学报 62 050502]

    [2]

    Yu S J 2014 Acta Phys. Sin. 63 116801 (in Chinese) [余森江 2014 物理学报 63 116801]

    [3]

    Zhang L Y, Jin G X, Cao L, Wang Z Y

    [4]

    Ge T S 2000 Foundation of Solid Internal Friction Theory: Grain Boundary Relaxation and Structure (Beijing: Science Press) pp442-526 (in Chinese) [葛庭燧 2000 固体内耗理论基础\pzh 晶界弛豫与晶界结构 (北京: 科学出版社) 第442-526页]

    [5]

    Masti R S, Sainsbury M G 2005 Thin Wall. Struct. 43 1355

    [6]

    Patsias S, Tassini N, Lambfinou K 2006 Mater. Sci. Eng. A 442 504

    [7]

    Yin F, Ohsawa Y, Sato A, Kawahara K 2001 Mater. Trans. 42 385

    [8]

    Dao M, Lu L, Asaro R J, de Hosson J T M, Ma E

    [9]

    Liu S S, Wen Y H, Zhu Z Z 2008 Chin. Phys. B 17 2621

    [10]

    Yu L M, Ma Y, Zhou C G, Xu H B 2005 Int. J. Solids Struct. 42 3045

    [11]

    Choi D H, Nix W D 2006 Acta Mater. 54 679

    [12]

    Zhang L, Lü C, Kiet T, Pei L Q, Zhao X

    [13]

    Muhammad I, Fayyaz H, Muhammad R

    [14]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S

    [15]

    Zhang Q, Hiroyuki T 2011 Acta Phys. Sin. 60 114103 (in Chinese) [张强, 户田裕之 2011 物理学报 60 114103]

    [16]

    Du G Y, Sun W, Ba D C, Han Q K 2014 CN Patent 103602955A (in Chinese) [杜广煜, 孙伟, 巴德纯, 韩清凯 2014 CN103602955A]

    [17]

    Rozmanov D, Kusalik P G 2010 Phys. Rev. E 81 056706

    [18]

    Guo Q N, Yue X D, Yang S E, Huo Y P 2010 Comput. Mater. Sci. 50 319

    [19]

    Yuan Q, Zhao Y P

    [20]

    Ao B Y, Xia J X, Chen P H, Hu W Y, Wang X L

    [21]

    Fan J H 2008 Multiscale Analysis for Deformation and Failure of Materials (Beijing: Science Press) pp40-132 (in Chinese) [范镜泓 2008 材料变形与破坏的多尺度分析 (北京: 科学出版社) 第40-132页]

  • [1]

    Tian Y, Huang L, Luo M K 2013 Acta Phys. Sin. 62 050502 (in Chinese) [田艳, 黄丽, 罗懋康 2013 物理学报 62 050502]

    [2]

    Yu S J 2014 Acta Phys. Sin. 63 116801 (in Chinese) [余森江 2014 物理学报 63 116801]

    [3]

    Zhang L Y, Jin G X, Cao L, Wang Z Y

    [4]

    Ge T S 2000 Foundation of Solid Internal Friction Theory: Grain Boundary Relaxation and Structure (Beijing: Science Press) pp442-526 (in Chinese) [葛庭燧 2000 固体内耗理论基础\pzh 晶界弛豫与晶界结构 (北京: 科学出版社) 第442-526页]

    [5]

    Masti R S, Sainsbury M G 2005 Thin Wall. Struct. 43 1355

    [6]

    Patsias S, Tassini N, Lambfinou K 2006 Mater. Sci. Eng. A 442 504

    [7]

    Yin F, Ohsawa Y, Sato A, Kawahara K 2001 Mater. Trans. 42 385

    [8]

    Dao M, Lu L, Asaro R J, de Hosson J T M, Ma E

    [9]

    Liu S S, Wen Y H, Zhu Z Z 2008 Chin. Phys. B 17 2621

    [10]

    Yu L M, Ma Y, Zhou C G, Xu H B 2005 Int. J. Solids Struct. 42 3045

    [11]

    Choi D H, Nix W D 2006 Acta Mater. 54 679

    [12]

    Zhang L, Lü C, Kiet T, Pei L Q, Zhao X

    [13]

    Muhammad I, Fayyaz H, Muhammad R

    [14]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S

    [15]

    Zhang Q, Hiroyuki T 2011 Acta Phys. Sin. 60 114103 (in Chinese) [张强, 户田裕之 2011 物理学报 60 114103]

    [16]

    Du G Y, Sun W, Ba D C, Han Q K 2014 CN Patent 103602955A (in Chinese) [杜广煜, 孙伟, 巴德纯, 韩清凯 2014 CN103602955A]

    [17]

    Rozmanov D, Kusalik P G 2010 Phys. Rev. E 81 056706

    [18]

    Guo Q N, Yue X D, Yang S E, Huo Y P 2010 Comput. Mater. Sci. 50 319

    [19]

    Yuan Q, Zhao Y P

    [20]

    Ao B Y, Xia J X, Chen P H, Hu W Y, Wang X L

    [21]

    Fan J H 2008 Multiscale Analysis for Deformation and Failure of Materials (Beijing: Science Press) pp40-132 (in Chinese) [范镜泓 2008 材料变形与破坏的多尺度分析 (北京: 科学出版社) 第40-132页]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1162
  • PDF下载量:  159
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-23
  • 修回日期:  2015-01-31
  • 刊出日期:  2015-07-05

多孔金属薄膜阻尼减振微观机理研究

  • 1. 东北大学机械工程及自动化学院, 沈阳 110819;
  • 2. 辽宁石油化工大学机械工程学院, 抚顺 113001
    基金项目: 

    国家自然科学基金青年科学基金(批准号: 51005043)、 中央高校基本科研业务费专项资金(批准号: N130403012, N140301001)和高等学校博士学科点专项科研基金(批准号: 20120042110031)资助的课题.

摘要: 研究了多孔金属薄膜的阻尼性能和微观机理. 采用分子动力学方法及扫描电镜(SEM) 原位观察实验手段对多孔金属薄膜阻尼进行研究, 得出金属薄膜应变滞后于应力周期性变化以及弹性势能周期性衰减的规律, 并通过应变滞后应力的时间差求得损耗因子; 从微观结构上可看出, 在薄膜孔缺陷附近\langle110angle晶向上经历了位错产生、 并且位错呈阶梯状向前发射的变化; 在SEM原位拉伸、卸载实验中观察到有微裂纹的萌生、斜向阶梯扩展、收缩及消失的周期过程. 结果表明: 在周期载荷作用下, 多孔金属薄膜的孔缺陷附近产生的位错可以挣脱开弱钉扎点并限制在强钉扎点上, 由于位错的变化及附近晶界间的相对滑动产生内摩擦, 消耗了系统的部分弹性势能, 引起金属薄膜的阻尼减振效应, 从而揭示了多孔金属涂层阻尼产生的微观机理.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回