搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑谣言清除过程的网络谣言传播与抑制

万贻平 张东戈 任清辉

考虑谣言清除过程的网络谣言传播与抑制

万贻平, 张东戈, 任清辉
PDF
导出引用
导出核心图
  • 网络谣言传播是网络传播动力学的重要课题之一. 网络谣言传播常常同时混杂谣言感染和谣言清除两个过程, 对这一现象的分析可以帮助我们更好地认识社会网络中的信息传播. 本文在susceptible-infective-refractory谣言传播模型的基础上增加谣言清除者, 定义了谣言感染和谣言清除的规则, 提出SIERsEs谣言传播模型, 建立了模型的平均场方程, 从理论上分析了谣言传播的稳态, 并求解出谣言传播的感染阈值和清除阈值. 仿真计算分析了感染和清除过程同时作用时, 感染率、清除率和网络平均度对谣言传播的影响. 研究发现, 网络平均度过小或过大, 谣言传播稳定后的影响力都将处于低水平. 分析了目标免疫和熟人免疫等传统免疫策略的不足, 针对网络环境下谣言抑制的特点, 提出主动免疫和被动免疫两种网络谣言免疫策略, 并研究了传播者遗忘率、清除者遗忘率和开始免疫时间参数对这两种谣言免疫策略有效性的影响. 需要重视的是: 研究发现一些直观看来有效的谣言抑制措施反而可能提高谣言的影响力. 研究结果有助于深化对于网络传播动力学的理解, 同时为发展有效的网络谣言抑制策略提供新的思路.
      通信作者: 张东戈, sys_analysis@126.com
    • 基金项目: 国家自然科学基金(批准号: 61174198)资助的课题.
    [1]

    Daley D J, Kendall D G 1965 J. Appl. Math. 1 42

    [2]

    Maki D P, Thompson M 1973 Mathematical Models and Applications (New Jersey: Englewood Cliffs) p10

    [3]

    Zanette D H 2001 Phys. Rev. E 64 050901

    [4]

    Zanette D H 2002 Phys. Rev. E 65 041908

    [5]

    Moreno Y, Nekovee M, Pacheco A F 2004 Phys. Rev. E 69 066130

    [6]

    Xing Q B, Zhang Y B, Liang Z N 2011 Chin. Phys. B 20 120201

    [7]

    Lu Y L, Jiang G P, Song Y R 2012 Chin. Phys. B 21 100207

    [8]

    Song Y R, Jiang G P, Gong Y W 2012 Chin. Phys. B 21 010205

    [9]

    Trpevski D, Tang W K S, Kocarev L 2010 Phys. Rev. E 81 056102

    [10]

    Zhao L J, Wang Q, Cheng J J, Chen Y C, Wang J J, Huang W 2011 Physica A: Statist. Mech. Appl. 390 2619

    [11]

    Gu Y R, Xia L L 2012 Acta Phys. Sin. 61 238701 (in Chinese) [顾亦然, 夏玲玲 2012 物理学报 61 238701]

    [12]

    Wang C, Liu C Y, Hu Y P, Liu Z H, Ma J F 2014 Acta Phys. Sin. 63 180501 (in Chinese) [王超, 刘骋远, 胡远萍, 刘志宏, 马建峰 2014 物理学报 63 180501]

    [13]

    Zan Y, Wu J, Li P, Yu Q 2014 Physica A: Statist. Mech. Appl. 405 159

    [14]

    Wang J, Zhao L, Huang R 2014 Physica A: Statist. Mech. Appl. 398 43

    [15]

    Allport G W, Postman L 1947 Public Opin. Quart. 10 501

    [16]

    Peterson W, Gist N 1951 Am. J. Sociol. 57 159

    [17]

    Rasnow R L 1988 J. Commun. 38 1

    [18]

    Pendleton S C 1998 Lang. Commun. 1 69

    [19]

    Karrer B, Newman M E J 2011 Phys. Rev. E 84 036106

    [20]

    Wang W, Tang M, Yang H, Do Y, Lai Y C, Lee G 2014 Sci. Rep. 4 5097

    [21]

    Huang J Y, Jin X G 2011 J. Syst. Sci. Compl. 24 449

    [22]

    Singh A, Singh Y N 2013 Acta Phys. Pol. B 44 5

    [23]

    Albert R, Jeong H, Barabási A L 2000 Nature 406 378

    [24]

    Cohen R, Erez K, Ben-Avraham D, Havlin S 2000 Phys. Rev. Lett. 85 4626

    [25]

    Pastor-Satorras R, Vespignani A 2001 Phys. Rev. Lett. 86 3200

    [26]

    Gómez-Gardenes J, Echenique P, Moreno Y 2006 Eur. Phys. J. B 49 259

    [27]

    Cohen R, Havlin S, Ben-Avraham D 2003 Phys. Rev. Lett. 91 247901

    [28]

    Wang W, Tang M, Zhang H F, Gao H, Do Y, Liu Z H 2014 Phys. Rev. E 90 042803

    [29]

    Anderson R M, May R M 1992 Infectious Diseases in Humans (Oxford: Oxford University Press) pp530-540

  • [1]

    Daley D J, Kendall D G 1965 J. Appl. Math. 1 42

    [2]

    Maki D P, Thompson M 1973 Mathematical Models and Applications (New Jersey: Englewood Cliffs) p10

    [3]

    Zanette D H 2001 Phys. Rev. E 64 050901

    [4]

    Zanette D H 2002 Phys. Rev. E 65 041908

    [5]

    Moreno Y, Nekovee M, Pacheco A F 2004 Phys. Rev. E 69 066130

    [6]

    Xing Q B, Zhang Y B, Liang Z N 2011 Chin. Phys. B 20 120201

    [7]

    Lu Y L, Jiang G P, Song Y R 2012 Chin. Phys. B 21 100207

    [8]

    Song Y R, Jiang G P, Gong Y W 2012 Chin. Phys. B 21 010205

    [9]

    Trpevski D, Tang W K S, Kocarev L 2010 Phys. Rev. E 81 056102

    [10]

    Zhao L J, Wang Q, Cheng J J, Chen Y C, Wang J J, Huang W 2011 Physica A: Statist. Mech. Appl. 390 2619

    [11]

    Gu Y R, Xia L L 2012 Acta Phys. Sin. 61 238701 (in Chinese) [顾亦然, 夏玲玲 2012 物理学报 61 238701]

    [12]

    Wang C, Liu C Y, Hu Y P, Liu Z H, Ma J F 2014 Acta Phys. Sin. 63 180501 (in Chinese) [王超, 刘骋远, 胡远萍, 刘志宏, 马建峰 2014 物理学报 63 180501]

    [13]

    Zan Y, Wu J, Li P, Yu Q 2014 Physica A: Statist. Mech. Appl. 405 159

    [14]

    Wang J, Zhao L, Huang R 2014 Physica A: Statist. Mech. Appl. 398 43

    [15]

    Allport G W, Postman L 1947 Public Opin. Quart. 10 501

    [16]

    Peterson W, Gist N 1951 Am. J. Sociol. 57 159

    [17]

    Rasnow R L 1988 J. Commun. 38 1

    [18]

    Pendleton S C 1998 Lang. Commun. 1 69

    [19]

    Karrer B, Newman M E J 2011 Phys. Rev. E 84 036106

    [20]

    Wang W, Tang M, Yang H, Do Y, Lai Y C, Lee G 2014 Sci. Rep. 4 5097

    [21]

    Huang J Y, Jin X G 2011 J. Syst. Sci. Compl. 24 449

    [22]

    Singh A, Singh Y N 2013 Acta Phys. Pol. B 44 5

    [23]

    Albert R, Jeong H, Barabási A L 2000 Nature 406 378

    [24]

    Cohen R, Erez K, Ben-Avraham D, Havlin S 2000 Phys. Rev. Lett. 85 4626

    [25]

    Pastor-Satorras R, Vespignani A 2001 Phys. Rev. Lett. 86 3200

    [26]

    Gómez-Gardenes J, Echenique P, Moreno Y 2006 Eur. Phys. J. B 49 259

    [27]

    Cohen R, Havlin S, Ben-Avraham D 2003 Phys. Rev. Lett. 91 247901

    [28]

    Wang W, Tang M, Zhang H F, Gao H, Do Y, Liu Z H 2014 Phys. Rev. E 90 042803

    [29]

    Anderson R M, May R M 1992 Infectious Diseases in Humans (Oxford: Oxford University Press) pp530-540

  • [1] 张菊平, 郭昊明, 荆文君, 靳祯. 基于真实信息传播者的谣言传播模型的动力学分析. 物理学报, 2019, 68(15): 150501. doi: 10.7498/aps.68.20190191
    [2] 朱霖河, 李玲. 基于辟谣机制的时滞谣言传播模型的动力学分析. 物理学报, 2020, 69(2): 020501. doi: 10.7498/aps.69.20191503
    [3] 王辉, 韩江洪, 邓林, 程克勤. 基于移动社交网络的谣言传播动力学研究. 物理学报, 2013, 62(11): 110505. doi: 10.7498/aps.62.110505
    [4] 顾亦然, 夏玲玲. 在线社交网络中谣言的传播与抑制. 物理学报, 2012, 61(23): 238701. doi: 10.7498/aps.61.238701
    [5] 王亚奇, 蒋国平. 考虑网络流量的无标度网络病毒免疫策略研究. 物理学报, 2011, 60(6): 060202. doi: 10.7498/aps.60.060202
    [6] 王亚奇, 杨晓元. 一种无线传感器网络簇间拓扑演化模型及其免疫研究. 物理学报, 2012, 61(9): 090202. doi: 10.7498/aps.61.090202
    [7] 黄斌, 赵翔宇, 齐凯, 唐明, 都永海. 复杂网络的顶点着色及其在疾病免疫中的应用. 物理学报, 2013, 62(21): 218902. doi: 10.7498/aps.62.218902
    [8] 王亚奇, 王静, 杨海滨. 基于复杂网络理论的微博用户关系网络演化模型研究. 物理学报, 2014, 63(20): 208902. doi: 10.7498/aps.63.208902
    [9] 吕天阳, 朴秀峰, 谢文艳, 黄少滨. 基于传播免疫的复杂网络可控性研究. 物理学报, 2012, 61(17): 170512. doi: 10.7498/aps.61.170512
    [10] 王亚奇, 蒋国平. 复杂网络中考虑不完全免疫的病毒传播研究. 物理学报, 2010, 59(10): 6734-6743. doi: 10.7498/aps.59.6734
    [11] 奚衍斌, 张 宇, 王晓钢, 刘 悦, 余 虹, 姜东光. 调制磁场清除柱形等离子体发生器中的尘埃颗粒. 物理学报, 2005, 54(1): 164-172. doi: 10.7498/aps.54.164
    [12] 郭元恒. B—A型电离真空计内电清除现象的探讨. 物理学报, 1961, 71(3): 157-162. doi: 10.7498/aps.17.157
    [13] 别梦杰, 陈弟虎, 邵元智, 钟伟荣, 李立. 关联白噪声对抗肿瘤体系免疫效果的影响. 物理学报, 2009, 58(1): 97-101. doi: 10.7498/aps.58.97
    [14] 胡兆龙, 刘建国, 任卓明. 基于节点度信息的自愿免疫模型研究. 物理学报, 2013, 62(21): 218901. doi: 10.7498/aps.62.218901
    [15] 李涛, 裴文江, 王少平. 无标度复杂网络负载传输优化策略. 物理学报, 2009, 58(9): 5903-5910. doi: 10.7498/aps.58.5903
    [16] 陈华良, 刘忠信, 陈增强, 袁著祉. 复杂网络的一种加权路由策略研究. 物理学报, 2009, 58(9): 6068-6073. doi: 10.7498/aps.58.6068
    [17] 蒋国平, 邵斐. 基于社团结构的负载传输优化策略研究. 物理学报, 2011, 60(7): 078902. doi: 10.7498/aps.60.078902
    [18] 周小清, 邬云文, 赵晗. 量子隐形传态网络的互联与路由策略. 物理学报, 2011, 60(4): 040304. doi: 10.7498/aps.60.040304.2
    [19] 吴军科, 周雒维, 卢伟国. 电压型逆变器的通用分岔控制策略研究. 物理学报, 2012, 61(21): 210202. doi: 10.7498/aps.61.210202
    [20] 刘晓慧, 聂敏, 裴昌幸. 量子无线广域网构建与路由策略. 物理学报, 2013, 62(20): 200304. doi: 10.7498/aps.62.200304
  • 引用本文:
    Citation:
计量
  • 文章访问数:  715
  • PDF下载量:  249
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-17
  • 修回日期:  2015-09-10
  • 刊出日期:  2015-12-20

考虑谣言清除过程的网络谣言传播与抑制

  • 1. 解放军理工大学指挥信息系统学院, 南京 210007
  • 通信作者: 张东戈, sys_analysis@126.com
    基金项目: 

    国家自然科学基金(批准号: 61174198)资助的课题.

摘要: 网络谣言传播是网络传播动力学的重要课题之一. 网络谣言传播常常同时混杂谣言感染和谣言清除两个过程, 对这一现象的分析可以帮助我们更好地认识社会网络中的信息传播. 本文在susceptible-infective-refractory谣言传播模型的基础上增加谣言清除者, 定义了谣言感染和谣言清除的规则, 提出SIERsEs谣言传播模型, 建立了模型的平均场方程, 从理论上分析了谣言传播的稳态, 并求解出谣言传播的感染阈值和清除阈值. 仿真计算分析了感染和清除过程同时作用时, 感染率、清除率和网络平均度对谣言传播的影响. 研究发现, 网络平均度过小或过大, 谣言传播稳定后的影响力都将处于低水平. 分析了目标免疫和熟人免疫等传统免疫策略的不足, 针对网络环境下谣言抑制的特点, 提出主动免疫和被动免疫两种网络谣言免疫策略, 并研究了传播者遗忘率、清除者遗忘率和开始免疫时间参数对这两种谣言免疫策略有效性的影响. 需要重视的是: 研究发现一些直观看来有效的谣言抑制措施反而可能提高谣言的影响力. 研究结果有助于深化对于网络传播动力学的理解, 同时为发展有效的网络谣言抑制策略提供新的思路.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回