搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同退火温度的Al2O3:C薄膜热释光和光释光性能

吴丽 王倩 李国栋 窦巧娅 吉旭

不同退火温度的Al2O3:C薄膜热释光和光释光性能

吴丽, 王倩, 李国栋, 窦巧娅, 吉旭
PDF
导出引用
导出核心图
  • -Al2O3:C晶体的热释光和光释光性能优越, 但其制备要求高, 需高温和高还原气氛. 与 -Al2O3:C晶体性能接近的 -Al2O3:C陶瓷, 热释光峰不单一. 本文采用两次阳极氧化法在0.5 mol/L的草酸溶液中5 ℃恒温制备高度均匀有序的多孔Al2O3:C薄膜, 主要研究不同退火温度对其热释光和光释光特性的影响. 结果表明, 经不同温度退火后的Al2O3:C薄膜均为非晶结构; 不同退火温度的Al2O3:C薄膜热释光的主发光峰约在310 ℃左右, 符合通用级动力学模型. 600 ℃退火后的Al2O3:C薄膜热释光灵敏度最强, 其热释光剂量曲线在110 Gy范围内具有很好的线性响应, 在剂量10120 Gy 范围内出现超线性响应; 在相同的辐照剂量下, 随着退火温度的升高( 600 ℃)光释光的初始发光强度逐渐增强. 不同退火温度的Al2O3:C薄膜光释光衰减曲线都呈典型的指数衰减且快衰减速率相比 -Al2O3:C晶体显著加快. 600 ℃退火后的Al2O3:C薄膜光释光灵敏度最强, 其光释光剂量响应曲线在1200 Gy整体上都具有很好的剂量线性关系. 与热释光相比, Al2O3:C薄膜的光释光具有更宽的线性剂量响应范围. 此研究为Al2O3:C薄膜作为光释光辐射剂量材料做出了有益的探索.
      通信作者: 王倩, wq@xju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11065009)资助的课题.
    [1]

    Mckeever S W S (translated by Cai G G, Wu F, Wang S T) 1993 Thermoluminescence of Solids (Beijing:Atomic Press ) pp1-139 (in Chinese) [Mckeever S W S 著(蔡干钢吴芳, 王所亭译) 1993 固体热释光(北京: 原子能出版社)第 1-139 页]

    [2]

    Rieke J K, Daniels F 1957 J. Phys. Chem. 61 629

    [3]

    Akselrod M S, Kortov V S, Kravetsky D J, Gotlib V I 1990 Radiat. Prot. Dosim. 32 15

    [4]

    Yang X B, Li H J, Xu J, Cheng Y, Su L B, Tang Q 2008 Acta Phys. Sin. 57 7900 (in Chinese) [杨新波, 李红军, 徐军, 程艳, 苏良碧, 唐强 2008 物理学报 57 7900]

    [5]

    McKeever S W S 2001 Nucl. Instr. Meth. B 184 29

    [6]

    Tang K Y, Fan H J, Zhu H Y, Cui H, Liu Z 2011 Nucl. Electron. Detect. Technol. 31 1152 (in Chinese) [唐开勇, 樊海军, 朱红英, 崔辉, 刘正 2011 核电子学与探测技术 31 1152]

    [7]

    Kortov V S Ermakov A E Zatsepin A F Nikiforov S V 2008 Radiat Meas 43 341

    [8]

    Zhang B, Lu S Z, Zhang H J, Yang Q H 2010 Chin Phys. B 19 077805

    [9]

    de Azevedo W M, de Oliveira G B, da Silva E F, Khoury H J, de Jesus E F O 2006 Radiat Prot. Dosim. 119 201

    [10]

    de Barros V S M, Khoury H J, Azevedo W M, da Silva E F 2007 Nucl. Instr. Meth. A 580 180

    [11]

    Yang P X, Zhang X M, An M Z, Wang F P 2008 Electroplat. Pollut. Control 28 28 (in Chinese) [杨培霞, 张新梅, 安茂忠, 王福平2008 电镀与环保 28 28]

    [12]

    Ma C L 2004 Acta Phys. Sin. 53 1952 (in Chinese) [马春兰 2004 物理学报 53 1952]

    [13]

    Li G D, Wang Q, Deng B X, Zhang Y J 2014 Acta Phys. Sin. 63 247802 (in Chinese) [李国栋, 王倩, 邓保霞, 张雅晶 2014 物理学报 63 247802]

    [14]

    Guo J Y, Tang Q, Jia Y X, Liu X W, Liu Y B 2014 Nucl. Tech. 37 050203 (in Chinese) [郭竞渊, 唐强, 贾育新, 刘小伟, 刘彦兵 2014 核技术 37 050203]

    [15]

    Yang X B, Xu J, Li H J, Bi Q Y, Cheng Y, Su L B, Tang Q 2010 Chin Phys. B 19 047803

    [16]

    Xu W L, Zheng M J, Wu S, Shen W Z 2004 Appl. Phys. Lett. 85 4364

    [17]

    Sun X Y, Xu F Q, Li Z M, Zhang W H 2006 J. Lumin. 121 588

    [18]

    Yang P X, An M Z, Tian Z Q 2007 Mater. Sci. Technol. 15 87 (in Chinese) [杨培霞, 安茂忠, 田兆清 2007 材料科学与工艺 15 87]

    [19]

    Hu K Y, Li H J, Xu J, Yang Q H, Su L B, Tang Q 2012 Acta Phys. Sin. 61 157802 (in Chinese) [胡克艳, 李红军, 徐军, 杨秋红, 苏良碧, 唐强 2012 物理学报 61 157802]

    [20]

    Li Z W, Jiang J L, Wang Q 2009 Nucl. Electron. Detect. Technol. 29 1334 (in Chinese) [李子威, 姜家亮, 王倩 2009 核电子学与探测技术 29 1334]

    [21]

    Li Z J, Huang K L 2007 Lumin. escence 22 355

    [22]

    Khan G G, Singh A K, Mandal K 2013 J. Lumin. 134 772

    [23]

    Markey B G, Colyott L E, Mckeever S W S 1995 Radiat. Meas. 24 457

  • [1]

    Mckeever S W S (translated by Cai G G, Wu F, Wang S T) 1993 Thermoluminescence of Solids (Beijing:Atomic Press ) pp1-139 (in Chinese) [Mckeever S W S 著(蔡干钢吴芳, 王所亭译) 1993 固体热释光(北京: 原子能出版社)第 1-139 页]

    [2]

    Rieke J K, Daniels F 1957 J. Phys. Chem. 61 629

    [3]

    Akselrod M S, Kortov V S, Kravetsky D J, Gotlib V I 1990 Radiat. Prot. Dosim. 32 15

    [4]

    Yang X B, Li H J, Xu J, Cheng Y, Su L B, Tang Q 2008 Acta Phys. Sin. 57 7900 (in Chinese) [杨新波, 李红军, 徐军, 程艳, 苏良碧, 唐强 2008 物理学报 57 7900]

    [5]

    McKeever S W S 2001 Nucl. Instr. Meth. B 184 29

    [6]

    Tang K Y, Fan H J, Zhu H Y, Cui H, Liu Z 2011 Nucl. Electron. Detect. Technol. 31 1152 (in Chinese) [唐开勇, 樊海军, 朱红英, 崔辉, 刘正 2011 核电子学与探测技术 31 1152]

    [7]

    Kortov V S Ermakov A E Zatsepin A F Nikiforov S V 2008 Radiat Meas 43 341

    [8]

    Zhang B, Lu S Z, Zhang H J, Yang Q H 2010 Chin Phys. B 19 077805

    [9]

    de Azevedo W M, de Oliveira G B, da Silva E F, Khoury H J, de Jesus E F O 2006 Radiat Prot. Dosim. 119 201

    [10]

    de Barros V S M, Khoury H J, Azevedo W M, da Silva E F 2007 Nucl. Instr. Meth. A 580 180

    [11]

    Yang P X, Zhang X M, An M Z, Wang F P 2008 Electroplat. Pollut. Control 28 28 (in Chinese) [杨培霞, 张新梅, 安茂忠, 王福平2008 电镀与环保 28 28]

    [12]

    Ma C L 2004 Acta Phys. Sin. 53 1952 (in Chinese) [马春兰 2004 物理学报 53 1952]

    [13]

    Li G D, Wang Q, Deng B X, Zhang Y J 2014 Acta Phys. Sin. 63 247802 (in Chinese) [李国栋, 王倩, 邓保霞, 张雅晶 2014 物理学报 63 247802]

    [14]

    Guo J Y, Tang Q, Jia Y X, Liu X W, Liu Y B 2014 Nucl. Tech. 37 050203 (in Chinese) [郭竞渊, 唐强, 贾育新, 刘小伟, 刘彦兵 2014 核技术 37 050203]

    [15]

    Yang X B, Xu J, Li H J, Bi Q Y, Cheng Y, Su L B, Tang Q 2010 Chin Phys. B 19 047803

    [16]

    Xu W L, Zheng M J, Wu S, Shen W Z 2004 Appl. Phys. Lett. 85 4364

    [17]

    Sun X Y, Xu F Q, Li Z M, Zhang W H 2006 J. Lumin. 121 588

    [18]

    Yang P X, An M Z, Tian Z Q 2007 Mater. Sci. Technol. 15 87 (in Chinese) [杨培霞, 安茂忠, 田兆清 2007 材料科学与工艺 15 87]

    [19]

    Hu K Y, Li H J, Xu J, Yang Q H, Su L B, Tang Q 2012 Acta Phys. Sin. 61 157802 (in Chinese) [胡克艳, 李红军, 徐军, 杨秋红, 苏良碧, 唐强 2012 物理学报 61 157802]

    [20]

    Li Z W, Jiang J L, Wang Q 2009 Nucl. Electron. Detect. Technol. 29 1334 (in Chinese) [李子威, 姜家亮, 王倩 2009 核电子学与探测技术 29 1334]

    [21]

    Li Z J, Huang K L 2007 Lumin. escence 22 355

    [22]

    Khan G G, Singh A K, Mandal K 2013 J. Lumin. 134 772

    [23]

    Markey B G, Colyott L E, Mckeever S W S 1995 Radiat. Meas. 24 457

  • [1] 杨新波, 李红军, 徐 军, 程 艳, 苏良碧, 唐 强. α-Al2O3:C晶体的热释光和光释光特性. 物理学报, 2008, 57(12): 7900-7905. doi: 10.7498/aps.57.7900
    [2] 胡克艳, 李红军, 徐军, 杨秋红, 苏良碧, 唐强. 不同粒径-Al2O3:C晶态粉体热释光和光释光特性. 物理学报, 2012, 61(15): 157802. doi: 10.7498/aps.61.157802
    [3] 梁宝鎏, 李德卉, 唐 强, 张纯祥, 罗达玲. SrSO4:Eu磷光体的光释光特性. 物理学报, 2005, 54(1): 64-69. doi: 10.7498/aps.54.64
    [4] 张斌, 张浩佳, 杨秋红, 陆神洲. α-Al2O3透明陶瓷的发光及热释光特性. 物理学报, 2010, 59(2): 1333-1337. doi: 10.7498/aps.59.1333
    [5] 罗达玲, 唐强, 郭竞渊, 张纯祥. MSO4:Eu2+(M =Mg, Ca, Sr, Ba)的等电子陷阱与热释光特性. 物理学报, 2015, 64(8): 087805. doi: 10.7498/aps.64.087805
    [6] 周东方, 戚泽明, 刘波, 施朝淑, 汤洪高, 胡关钦. 掺Gd3+,Y3+对PbWO_4低温热释光的影响. 物理学报, 2001, 50(8): 1627-1631. doi: 10.7498/aps.50.1627
    [7] 郭竞渊, 唐强, 唐桦明, 张纯祥, 罗达玲, 刘小伟. LiMgPO4:Tm,Tb的热释光和光释光陷阱参数. 物理学报, 2017, 66(10): 107802. doi: 10.7498/aps.66.107802
    [8] 龚宇, 陈柏桦, 熊亮萍, 古梅, 熊洁, 高小铃, 罗阳明, 胡胜, 王育华. 氧空位对Eu2+, Dy3+掺杂的Ca5MgSi3O12发光及余辉性能的影响. 物理学报, 2013, 62(15): 153201. doi: 10.7498/aps.62.153201
    [9] 张纯祥, 唐强, 罗达玲. CaSO4∶Eu磷光体的热释光特性研究. 物理学报, 2002, 51(12): 2881-2886. doi: 10.7498/aps.51.2881
    [10] 程帅, 徐旭辉, 王鹏久, 邱建备. 新型电子俘获型材料β-Sr2SiO4:Eu2+, La3+长余辉和光激励发光性能的研究. 物理学报, 2015, 64(1): 017802. doi: 10.7498/aps.64.017802
    [11] 魏亚光, 吴 灿, 李裕熊, 刘 波, 施朝淑, 胡关钦, 沈定中. 掺Y对PbWO4闪烁体的热释光影响. 物理学报, 2000, 49(10): 2078-2082. doi: 10.7498/aps.49.2078
    [12] 邓柳咏, 胡义华, 王银海, 吴浩怡, 谢伟. Dy3+/Nd3+掺杂对Sr4Al14O25:Eu2+陷阱能级的影响. 物理学报, 2010, 59(5): 3402-3407. doi: 10.7498/aps.59.3402
    [13] 林理彬, 梁宝鎏, 李德卉, 张纯祥, 唐强, 罗达玲. α-Al2O3单晶的热释光和光释光特性. 物理学报, 2004, 53(1): 291-295. doi: 10.7498/aps.53.291
    [14] 王银海, 胡义华, 吴浩怡, 邓柳咏, 谢伟, 符楚君, 廖臣兴, 牟中飞. Y3Al5O12∶Ce3+的余辉和热释光特性. 物理学报, 2011, 60(1): 013201. doi: 10.7498/aps.60.013201
    [15] 曹顿华, 叶崇志, 廖晶莹, 杨培志, 谢建军, 罗 澜. F, Y双掺钨酸铅晶体的发光性能和微观缺陷. 物理学报, 2006, 55(4): 1947-1952. doi: 10.7498/aps.55.1947
    [16] 林理彬, 张纯祥, 唐 强, 罗达玲. α-Al2O3: Mn单晶的三维热释发光谱研究. 物理学报, 2004, 53(11): 3940-3944. doi: 10.7498/aps.53.3940
    [17] 张歆, 章晓中, 谭新玉, 于奕, 万蔡华. Al2O3增强的Co2-C98/Al2O3/Si异质结的光伏效应. 物理学报, 2012, 61(14): 147303. doi: 10.7498/aps.61.147303
    [18] 谭 娜, 段淑卿, 张庆瑜. 退火温度对Er/Yb共掺Al2O3薄膜的光致荧光光谱的影响. 物理学报, 2005, 54(9): 4433-4438. doi: 10.7498/aps.54.4433
    [19] 牟季美, 姚晓晖, 张立德, 赵铁男. 钠米Al2O3块体材料在可见光范围的荧光现象. 物理学报, 1994, 43(6): 1000-1007. doi: 10.7498/aps.43.1000
    [20] 周 健, 荀 坤, 刘世勇, 沈德芳. MO磁光薄膜的光致局域热研究. 物理学报, 1999, 48(4): 620-627. doi: 10.7498/aps.48.620
  • 引用本文:
    Citation:
计量
  • 文章访问数:  551
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-22
  • 修回日期:  2015-11-16
  • 刊出日期:  2016-02-05

不同退火温度的Al2O3:C薄膜热释光和光释光性能

  • 1. 新疆大学物理科学与技术学院, 乌鲁木齐 830046
  • 通信作者: 王倩, wq@xju.edu.cn
    基金项目: 

    国家自然科学基金(批准号: 11065009)资助的课题.

摘要: -Al2O3:C晶体的热释光和光释光性能优越, 但其制备要求高, 需高温和高还原气氛. 与 -Al2O3:C晶体性能接近的 -Al2O3:C陶瓷, 热释光峰不单一. 本文采用两次阳极氧化法在0.5 mol/L的草酸溶液中5 ℃恒温制备高度均匀有序的多孔Al2O3:C薄膜, 主要研究不同退火温度对其热释光和光释光特性的影响. 结果表明, 经不同温度退火后的Al2O3:C薄膜均为非晶结构; 不同退火温度的Al2O3:C薄膜热释光的主发光峰约在310 ℃左右, 符合通用级动力学模型. 600 ℃退火后的Al2O3:C薄膜热释光灵敏度最强, 其热释光剂量曲线在110 Gy范围内具有很好的线性响应, 在剂量10120 Gy 范围内出现超线性响应; 在相同的辐照剂量下, 随着退火温度的升高( 600 ℃)光释光的初始发光强度逐渐增强. 不同退火温度的Al2O3:C薄膜光释光衰减曲线都呈典型的指数衰减且快衰减速率相比 -Al2O3:C晶体显著加快. 600 ℃退火后的Al2O3:C薄膜光释光灵敏度最强, 其光释光剂量响应曲线在1200 Gy整体上都具有很好的剂量线性关系. 与热释光相比, Al2O3:C薄膜的光释光具有更宽的线性剂量响应范围. 此研究为Al2O3:C薄膜作为光释光辐射剂量材料做出了有益的探索.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回