搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TATB晶体声子谱及比热容的第一性原理研究

蒋文灿 陈华 张伟斌

TATB晶体声子谱及比热容的第一性原理研究

蒋文灿, 陈华, 张伟斌
PDF
导出引用
导出核心图
  • 利用第一性原理并结合vdW-DF2范德瓦耳斯力校正研究了TATB(C6H6O6N6)晶体声子谱及比热容. 采用冷冻声子法计算了TATB晶体声子谱和声子态密度, 发现在2.3 THz附近TATB声子态密度最大, 证实了太赫兹光谱实验观察到的2.22 THz附近的强吸收峰. 基于声子态密度研究了振动模式对比热容的贡献, 分析结果表明, 常温下0-27.5 THz频段振动模式贡献了比热容的93.7%. 同时比较了升温过程中振动模式对比热容的贡献, 指出TATB热分解的引发键是C-NO2键断裂的可能性更大.
      通信作者: 张伟斌, weibinzhang@caep.cn
    • 基金项目: 中国工程物理研究院科学技术发展基金(批准号: 2013A0302013)资助的课题.
    [1]

    Cady H H, Larson A C 1965 Acta Crystallogr. 18 485

    [2]

    Ji G F 2002 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [姬广富 2002 博士学位论文 (南京: 南京理工大学)]

    [3]

    Fedorov I A, Zhuravlev Y N 2014 Chem. Phys. 436 1

    [4]

    Liu H 2006 Ph. D. Dissertation (Shichuan: Sounthwest Jiaotong University) (in Chinese) [刘红 2006 博士学位论文 (四川: 西南交通大学)]

    [5]

    Ojeda O U, ağin T 2011 J. Phys. Chem. B 115 12085

    [6]

    Gorshkov M, Grebenkin K, Zherebtsov A, Zaikin V, Slobodenyukov V, Tkachev O 2007 Combust. Explo. Shock 43 78

    [7]

    Bourasseau E, Maillet J B, Desbiens N, Stoltz G 2011 J. Phys. Chem. A 115 10729

    [8]

    Xiao J J, Huang Y C, Hu Y J, Xiao H M 2005 Sci. China Ser. B Chem. 48 504

    [9]

    Budzevich M M, Landerville A C, Conroy M W, Lin Y, Oleynik I I, White C T 2010 J. Appl. Phys. 107 113524

    [10]

    Dove M T 1993 Introduction to Lattice Dynamics (Cambridge: Cambridge University Press) pp1-2

    [11]

    Burnham A K, Weese R K, Wemhoff A P, Maienschein J L 2007 J. Therm. Anal. Calorim. 89 407

    [12]

    Dlott D D 2011 Annu. Rev. Phys. Chem. 62 575

    [13]

    Tarver C 1997 J. Phys. Chem. A 101 4845

    [14]

    Dlott D D 2003 J. Theor. Comput. Chem. 13 125

    [15]

    Henson B F, Smilowitz L B 2010 Shock Wave Science and Technology Reference Library Berlin Heidelberg 2010 pp45-128

    [16]

    Kraczek B, Chung P W 2013 J. Chem. Phys. 138 074505

    [17]

    Coffey C, Toton E 1982 J. Chem. Phys. 76 949

    [18]

    Dlott D, Fayer M D 1990 J.Chem. Phys. 92 3798

    [19]

    Tokmakoff A, Fayer M, Dlott D D 1993 J. Phys. Chem. 97 1901

    [20]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [21]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [22]

    Baroni S, Gironcoli S D, Corso A D, Giannozzi P 2001 Rev. Mod. Phys. 73 515

    [23]

    Li X X, Tao X M, Chen H M, Ouyang Y F, Du Y 2013 Chin. Phys. B 22 366

    [24]

    Feng S K, Li S M, Fu H Z 2014 Chin. Phys. B 23 420

    [25]

    Yu Y, Chen C L, Zhao G D, Zhao X L, Zhu X H 2014 Chin. Phys. Lett. 31 100

    [26]

    Zhang X J, Chen C L, Feng F L 2013 Chin. Phys. B 22 520

    [27]

    Pu C Y, Ye X T, Jiang H L, Zhang F W, Lu Z W, He J B, Zhou D W 2015 Chin. Phys. B 3 275

    [28]

    Velizhanin K A, Kilina S, Sewell T D, Piryatinski A 2008 J. Phys. Chem. B 112 13252

    [29]

    Wu Z, Kalia R K, Nakano A, Vashishta P 2011 J. Chem. Phys. 134 204509

    [30]

    Long Y, Chen J 2014 Philos. Mag. 94 2656

    [31]

    Cui H L, Ji G F, Chen X R, Zhu W H, Zhao F, Wen Y, Wei D Q 2009 J. Phys. Chem. A 114 1082

    [32]

    Sorescu D C, Rice B M 2010 J. Phys. Chem. C 114 6734

    [33]

    Lee K, Murray D, Kong L, Lundqvist B I, Langreth D C 2010 Phys. Rev. B 82 081101

    [34]

    Jiang W C, Chen H, Zhang W B 2016 Chin. J. Energ. Mater. (in Chinese) [蒋文灿, 陈华, 张伟斌 2016 含能材料] (in press)

    [35]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [36]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106

    [37]

    Birch F 1947 Phys. Rev. 71 809

    [38]

    Olinger B W, Cady H H 1976 Conference: 6. Symposium on Detonation San Diego, California, August 24-27, 1976 p224

    [39]

    Stevens L L, Velisavljevic N, Hooks D E, Dattelbaum D M 2008 Propell. Explos. Pyrot. 33 286

    [40]

    Rosen J M, Dickinson C 1969 J. Chem. Eng. Data 14 120

    [41]

    Jin Z, Liu J, Wang L L, Cao F L, Sun H 2014 Acta Phys. -Chem. Sin. 30 654 (in Chinese) [金钊, 刘建, 王丽莉, 曹风雷, 孙淮 2014 物理化学学报 30 654]

    [42]

    Liu L, Liu Y, Zybin S V, Sun H, Goddard III W A 2011 J. Phys. Chem. A 115 11016

    [43]

    Valenzano L, Slough W J, Perger W 2012 Shock Compression of Condensed Matter-2011: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter Chicago, IIIinois, June 26-July 1, 2011 pp1191-1194

    [44]

    Xu W T 1999 Group Theory and Its Applications in Solid State Physics (Beijing: Higher Education Press) pp218-221 (in Chinese) [徐婉棠 1999 群论及其在固体物理中的应用(北京: 高等教育出版社 第218-221页)]

    [45]

    Pravica M, Yulga B, Liu Z, Tschauner O 2007 Phys. Rev. B 76 64102

    [46]

    Mcgrane S, Shreve A 2003 J. Chem. Phys. 119 5834

    [47]

    Liu H, Zhao J, Ji G, Wei D, Gong Z 2006 Phys. Lett. A 358 63

    [48]

    Jia C Q, Song T, Liu X Y, Zhang Z W, Jiang G 2013 Chin. J. Energ. Mater. 21 434 (in Chinese) [贾传强, 宋涛, 刘晓亚, 张振伟, 蒋刚 2013 含能材料 21 434]

    [49]

    Hill J R, Dlott D D 1989 J. Chem. Phys. 89 830

    [50]

    Ye S, Tonokura K, Koshi M 2003 Combust. Flame 132 240

    [51]

    Ge S H, Cheng X L, Wu L S, Yang X D 2007 J. Mol. Struct. 809 55

    [52]

    Huang K, Han R Q 1966 Solid States Physics (Beijing: People's Education Press) pp79-82 (in Chinese) [黄昆, 韩汝琦 1966 固体物理学(北京: 人民教育出版社)第79-82页]

    [53]

    Xiao H M, Fan J F, Gu Z M, Dong H S 1998 Chem. Phys. 226 15

    [54]

    Wu Q, Chen H, Xiong G, Zhu W, Xiao H 2015 J. Phys. Chem. C 29 16500

  • [1]

    Cady H H, Larson A C 1965 Acta Crystallogr. 18 485

    [2]

    Ji G F 2002 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [姬广富 2002 博士学位论文 (南京: 南京理工大学)]

    [3]

    Fedorov I A, Zhuravlev Y N 2014 Chem. Phys. 436 1

    [4]

    Liu H 2006 Ph. D. Dissertation (Shichuan: Sounthwest Jiaotong University) (in Chinese) [刘红 2006 博士学位论文 (四川: 西南交通大学)]

    [5]

    Ojeda O U, ağin T 2011 J. Phys. Chem. B 115 12085

    [6]

    Gorshkov M, Grebenkin K, Zherebtsov A, Zaikin V, Slobodenyukov V, Tkachev O 2007 Combust. Explo. Shock 43 78

    [7]

    Bourasseau E, Maillet J B, Desbiens N, Stoltz G 2011 J. Phys. Chem. A 115 10729

    [8]

    Xiao J J, Huang Y C, Hu Y J, Xiao H M 2005 Sci. China Ser. B Chem. 48 504

    [9]

    Budzevich M M, Landerville A C, Conroy M W, Lin Y, Oleynik I I, White C T 2010 J. Appl. Phys. 107 113524

    [10]

    Dove M T 1993 Introduction to Lattice Dynamics (Cambridge: Cambridge University Press) pp1-2

    [11]

    Burnham A K, Weese R K, Wemhoff A P, Maienschein J L 2007 J. Therm. Anal. Calorim. 89 407

    [12]

    Dlott D D 2011 Annu. Rev. Phys. Chem. 62 575

    [13]

    Tarver C 1997 J. Phys. Chem. A 101 4845

    [14]

    Dlott D D 2003 J. Theor. Comput. Chem. 13 125

    [15]

    Henson B F, Smilowitz L B 2010 Shock Wave Science and Technology Reference Library Berlin Heidelberg 2010 pp45-128

    [16]

    Kraczek B, Chung P W 2013 J. Chem. Phys. 138 074505

    [17]

    Coffey C, Toton E 1982 J. Chem. Phys. 76 949

    [18]

    Dlott D, Fayer M D 1990 J.Chem. Phys. 92 3798

    [19]

    Tokmakoff A, Fayer M, Dlott D D 1993 J. Phys. Chem. 97 1901

    [20]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [21]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [22]

    Baroni S, Gironcoli S D, Corso A D, Giannozzi P 2001 Rev. Mod. Phys. 73 515

    [23]

    Li X X, Tao X M, Chen H M, Ouyang Y F, Du Y 2013 Chin. Phys. B 22 366

    [24]

    Feng S K, Li S M, Fu H Z 2014 Chin. Phys. B 23 420

    [25]

    Yu Y, Chen C L, Zhao G D, Zhao X L, Zhu X H 2014 Chin. Phys. Lett. 31 100

    [26]

    Zhang X J, Chen C L, Feng F L 2013 Chin. Phys. B 22 520

    [27]

    Pu C Y, Ye X T, Jiang H L, Zhang F W, Lu Z W, He J B, Zhou D W 2015 Chin. Phys. B 3 275

    [28]

    Velizhanin K A, Kilina S, Sewell T D, Piryatinski A 2008 J. Phys. Chem. B 112 13252

    [29]

    Wu Z, Kalia R K, Nakano A, Vashishta P 2011 J. Chem. Phys. 134 204509

    [30]

    Long Y, Chen J 2014 Philos. Mag. 94 2656

    [31]

    Cui H L, Ji G F, Chen X R, Zhu W H, Zhao F, Wen Y, Wei D Q 2009 J. Phys. Chem. A 114 1082

    [32]

    Sorescu D C, Rice B M 2010 J. Phys. Chem. C 114 6734

    [33]

    Lee K, Murray D, Kong L, Lundqvist B I, Langreth D C 2010 Phys. Rev. B 82 081101

    [34]

    Jiang W C, Chen H, Zhang W B 2016 Chin. J. Energ. Mater. (in Chinese) [蒋文灿, 陈华, 张伟斌 2016 含能材料] (in press)

    [35]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [36]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106

    [37]

    Birch F 1947 Phys. Rev. 71 809

    [38]

    Olinger B W, Cady H H 1976 Conference: 6. Symposium on Detonation San Diego, California, August 24-27, 1976 p224

    [39]

    Stevens L L, Velisavljevic N, Hooks D E, Dattelbaum D M 2008 Propell. Explos. Pyrot. 33 286

    [40]

    Rosen J M, Dickinson C 1969 J. Chem. Eng. Data 14 120

    [41]

    Jin Z, Liu J, Wang L L, Cao F L, Sun H 2014 Acta Phys. -Chem. Sin. 30 654 (in Chinese) [金钊, 刘建, 王丽莉, 曹风雷, 孙淮 2014 物理化学学报 30 654]

    [42]

    Liu L, Liu Y, Zybin S V, Sun H, Goddard III W A 2011 J. Phys. Chem. A 115 11016

    [43]

    Valenzano L, Slough W J, Perger W 2012 Shock Compression of Condensed Matter-2011: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter Chicago, IIIinois, June 26-July 1, 2011 pp1191-1194

    [44]

    Xu W T 1999 Group Theory and Its Applications in Solid State Physics (Beijing: Higher Education Press) pp218-221 (in Chinese) [徐婉棠 1999 群论及其在固体物理中的应用(北京: 高等教育出版社 第218-221页)]

    [45]

    Pravica M, Yulga B, Liu Z, Tschauner O 2007 Phys. Rev. B 76 64102

    [46]

    Mcgrane S, Shreve A 2003 J. Chem. Phys. 119 5834

    [47]

    Liu H, Zhao J, Ji G, Wei D, Gong Z 2006 Phys. Lett. A 358 63

    [48]

    Jia C Q, Song T, Liu X Y, Zhang Z W, Jiang G 2013 Chin. J. Energ. Mater. 21 434 (in Chinese) [贾传强, 宋涛, 刘晓亚, 张振伟, 蒋刚 2013 含能材料 21 434]

    [49]

    Hill J R, Dlott D D 1989 J. Chem. Phys. 89 830

    [50]

    Ye S, Tonokura K, Koshi M 2003 Combust. Flame 132 240

    [51]

    Ge S H, Cheng X L, Wu L S, Yang X D 2007 J. Mol. Struct. 809 55

    [52]

    Huang K, Han R Q 1966 Solid States Physics (Beijing: People's Education Press) pp79-82 (in Chinese) [黄昆, 韩汝琦 1966 固体物理学(北京: 人民教育出版社)第79-82页]

    [53]

    Xiao H M, Fan J F, Gu Z M, Dong H S 1998 Chem. Phys. 226 15

    [54]

    Wu Q, Chen H, Xiong G, Zhu W, Xiao H 2015 J. Phys. Chem. C 29 16500

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1622
  • PDF下载量:  272
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-01
  • 修回日期:  2016-04-05
  • 刊出日期:  2016-06-05

TATB晶体声子谱及比热容的第一性原理研究

  • 1. 中国工程物理研究院化工材料研究所, 绵阳 621900;
  • 2. 中国工程物理研究院研究生部, 绵阳 621900
  • 通信作者: 张伟斌, weibinzhang@caep.cn
    基金项目: 

    中国工程物理研究院科学技术发展基金(批准号: 2013A0302013)资助的课题.

摘要: 利用第一性原理并结合vdW-DF2范德瓦耳斯力校正研究了TATB(C6H6O6N6)晶体声子谱及比热容. 采用冷冻声子法计算了TATB晶体声子谱和声子态密度, 发现在2.3 THz附近TATB声子态密度最大, 证实了太赫兹光谱实验观察到的2.22 THz附近的强吸收峰. 基于声子态密度研究了振动模式对比热容的贡献, 分析结果表明, 常温下0-27.5 THz频段振动模式贡献了比热容的93.7%. 同时比较了升温过程中振动模式对比热容的贡献, 指出TATB热分解的引发键是C-NO2键断裂的可能性更大.

English Abstract

参考文献 (54)

目录

    /

    返回文章
    返回