搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率激光终端KDP晶体非共线高效三倍频及远场色分离方案数值模拟分析

刘崇 季来林 朱宝强 林尊琪

引用本文:
Citation:

高功率激光终端KDP晶体非共线高效三倍频及远场色分离方案数值模拟分析

刘崇, 季来林, 朱宝强, 林尊琪

Numerical simulation analysis of high efficient SFG and color separation in far field in high power laser facility based on noncollinear phase matching by KDP crystal

Liu Chong, Ji Lai-Lin, Zhu Bao-Qiang, Lin Zun-Qi
PDF
导出引用
  • 为满足高功率激光装置对终端光学系统的改进要求, 控制3光路透射元件厚度以降低激光损伤风险, 避免3非对称聚焦与色分离元件对靶场调靶产生不利影响, 本文利用非共线相位匹配原理讨论了KDP晶体I类和II类两种和频产生351 nm(3)激光及其远场色分离过程. 模拟结果表明, 室温20 ℃环境中除目前常用的共线和频外, 1053 nm()与526.5 nm(2)激光可选择I类或II类两种非共线和频方式实现高效3激光输出并在激光远场实现色分离, 且具有足够的高效转换失谐角容宽. 计算表明, 与I类和频类似, II类和频也存在一个非临界相位匹配过程, 其匹配方向约为 (3) = 86.53. 可通过增加晶体厚度克服其有效非线性系数较低的缺点, 实现3高效输出, 失谐角容宽可达 20 mrad. 为满足靶场需要, 解决非共线角容宽苛刻带来的调节不便, 并进一步使光路紧凑, 将楔角为12的熔石英楔板置于倍频晶体之后, 与2 激光在熔石英楔板后表面可产生约3.5 mrad分离角. 经非共线和频, 使用薄透镜即可实现聚焦及色分离. 该方案完全满足终端光学系统的改进要求, 可作为可靠的备选方案之一.
    Asymmetric property of wedge lens in 3 optical path which is used as frequency separation, and focusing element is considered to be an unfavourable factor for target alignment in inertial confinement fusion (ICF). Furthermore, the thickness of wedge lens in 3 optical path will lead to laser induced damage inevitably. For the purpose of scheme improvement of final optical assembly, types I and II noncollinear sum frequency generation in KDP crystal at room temperature are discussed based on nonlinear coupled wave theory. As illustrated by simulated result, in addition to type II collinear SFG used in ICF recently, 351 nm (3) waves can be generated by type I or II noncollinear SFG process. This method can realize color separations of , 2, 3 in far field without asymmetric element such as wedge lens and posses adequate tolerance of matching angle corresponding to the high efficiency conversion. As calculated, for type I SFG, when the noncollinear angle is in the interval from 0 to 19.99, phase matching condition can be satisfied in KDP crystal. The noncritical phase matching angle 3 is 90 and the corresponding noncollinear angle is about 19.99. The tolerance of mismatching angle is about 20 mrad. For type II SFG, the noncollinear angle interval that can satisfy phase matching process is about 0-13.55. Like type I SFG, there is also an noncritical solution in type II process whose matching angle is about (3) = 86.53. Because of the smaller effective nonlinear coefficient in this case, high efficiency conversion needs about 5 cm thick SFG crystal under 1 GW/cm2. Correspondingly, tolerance of mismatching angle is about 20 mrad. Because of the harsh tolerance of noncollinear angle between and 2 and for the purpose of compactness of final optical assembly, another method of noncollinear SFG is proposed: a piece of silica wedge with 12 wedged angle is mounted behind the SHG crystal in order to produce a 3.5 mrad intersection angle between and 2, and after type II noncollinear SFG process, , 2, 3 will be frequency separated in far field automatically by using thin lens. The tolerance of incident angle corresponding to high efficient conversion is about 1.0 mrad. This scheme can improve the the final optical assembly used recently.
      通信作者: 季来林, jsycjll@siom.ac.cn
      Corresponding author: Ji Lai-Lin, jsycjll@siom.ac.cn
    [1]

    Wegner P, Auerbach J, Biesiada T, Dixit S, Lawson J, Menapace J, Parham T, Swift D, Whitman P, Williams W 2004 Proc. SPIE 5341 181

    [2]

    Wegner P J, Auerbach J M, Barker C E, Burkhart S C, Couture S A, DeYoreo J J, Hibbard R L, Liou L W, Norton M A, Whitman P K, Hackel L A 1999 Proc. SPIE 3492 392

    [3]

    Dunne M 2012 Update on NIF and NIC

    [4]

    National Ignition Facility User Guide 2012 p47

    [5]

    Parham T G, Azevedo S, Chang J, Conder A, Heestand G, Henesian M, Kegelmeyer L, Liebman J, Manes K, Norton M, Nostrand M, Wegner P, Williams W, Whitman P K, Yang S 2009 LLNL-TR-410955

    [6]

    Qiao Z F, Lu X Q, Zhao D F, Zhu B Q 2008 Chin. J. Lasers 39 1328 (in Chinese) [乔战峰, 卢兴强, 赵东峰, 朱宝强 2008 中国激光 39 1328]

    [7]

    Shao P, Xia L, Zhao D F, Ju L J, Jiao Z Y 2015 Chin. J. Lasers 42 0408006 (in Chinese) [邵平, 夏 兰, 赵东峰, 居玲洁, 焦兆阳 2015 中国激光 42 0408006]

    [8]

    Chen J, Zheng Y L, An N, Chen X F 2015 Opt. Lett. 40 4484

    [9]

    Bates H E 1971 J. Opt. Soc. Am. 61 904

    [10]

    Bates H E 1973 J. Opt. Soc. Am. 63 146

  • [1]

    Wegner P, Auerbach J, Biesiada T, Dixit S, Lawson J, Menapace J, Parham T, Swift D, Whitman P, Williams W 2004 Proc. SPIE 5341 181

    [2]

    Wegner P J, Auerbach J M, Barker C E, Burkhart S C, Couture S A, DeYoreo J J, Hibbard R L, Liou L W, Norton M A, Whitman P K, Hackel L A 1999 Proc. SPIE 3492 392

    [3]

    Dunne M 2012 Update on NIF and NIC

    [4]

    National Ignition Facility User Guide 2012 p47

    [5]

    Parham T G, Azevedo S, Chang J, Conder A, Heestand G, Henesian M, Kegelmeyer L, Liebman J, Manes K, Norton M, Nostrand M, Wegner P, Williams W, Whitman P K, Yang S 2009 LLNL-TR-410955

    [6]

    Qiao Z F, Lu X Q, Zhao D F, Zhu B Q 2008 Chin. J. Lasers 39 1328 (in Chinese) [乔战峰, 卢兴强, 赵东峰, 朱宝强 2008 中国激光 39 1328]

    [7]

    Shao P, Xia L, Zhao D F, Ju L J, Jiao Z Y 2015 Chin. J. Lasers 42 0408006 (in Chinese) [邵平, 夏 兰, 赵东峰, 居玲洁, 焦兆阳 2015 中国激光 42 0408006]

    [8]

    Chen J, Zheng Y L, An N, Chen X F 2015 Opt. Lett. 40 4484

    [9]

    Bates H E 1971 J. Opt. Soc. Am. 61 904

    [10]

    Bates H E 1973 J. Opt. Soc. Am. 63 146

  • [1] 张丽娟, 张传超, 陈静, 白阳, 蒋一岚, 蒋晓龙, 王海军, 栾晓雨, 袁晓东, 廖威. 激光诱导熔石英表面损伤修复中的气泡形成和控制研究. 物理学报, 2018, 67(1): 016103. doi: 10.7498/aps.67.20171839
    [2] 沈超, 程湘爱, 田野, 许中杰, 江天. 1064nm纳秒激光对熔石英元件后表面击穿的实验与数值研究. 物理学报, 2016, 65(15): 155201. doi: 10.7498/aps.65.155201
    [3] 韩伟, 冯斌, 郑奎兴, 朱启华, 郑万国, 巩马理. 高功率激光装置熔石英紫外损伤增长研究. 物理学报, 2016, 65(24): 246102. doi: 10.7498/aps.65.246102
    [4] 钟勉, 杨亮, 任玮, 向霞, 刘翔, 练友运, 徐世珍, 郭德成, 郑万国, 袁晓东. 高功率脉冲电子束辐照SiO2的光学和激光损伤性能. 物理学报, 2014, 63(24): 246103. doi: 10.7498/aps.63.246103
    [5] 韩伟, 周丽丹, 李富全, 王芳, 冯斌, 郑奎兴, 巩马理. 光束通量空间分布随机变化的统计分析. 物理学报, 2014, 63(7): 074204. doi: 10.7498/aps.63.074204
    [6] 孙晓艳, 雷泽民, 卢兴强, 范滇元. 表面颗粒污染物诱导薄光学元件初始损伤的机理. 物理学报, 2014, 63(13): 134201. doi: 10.7498/aps.63.134201
    [7] 刘红婕, 王凤蕊, 罗青, 张振, 黄进, 周信达, 蒋晓东, 吴卫东, 郑万国. K9和熔石英玻璃纳秒基频激光损伤特性的实验对比研究. 物理学报, 2012, 61(7): 076103. doi: 10.7498/aps.61.076103
    [8] 周丽丹, 粟敬钦, 李平, 王文义, 刘兰琴, 张颖, 张小民. 高功率固体激光装置光学元件"缺陷"分布与光束近场质量的定量关系研究. 物理学报, 2011, 60(2): 024202. doi: 10.7498/aps.60.024202
    [9] 王坤鹏, 闫石. 不同荷电态替位缺陷Sp对磷酸二氢钾激光损伤的影响. 物理学报, 2011, 60(9): 097401. doi: 10.7498/aps.60.097401
    [10] 赵兴海, 胡建平, 高杨, 潘峰, 马平. 真空条件下激光诱导光纤损伤特性研究. 物理学报, 2010, 59(6): 3917-3923. doi: 10.7498/aps.59.3917
    [11] 刘红婕, 黄进, 王凤蕊, 周信达, 蒋晓东, 吴卫东. 熔石英表面热致应力对激光损伤行为影响的研究. 物理学报, 2010, 59(2): 1308-1313. doi: 10.7498/aps.59.1308
    [12] 夏志林, 郭培涛, 薛亦渝, 黄才华, 李展望. 短脉冲激光诱导薄膜损伤的等离子体爆炸过程分析. 物理学报, 2010, 59(5): 3523-3530. doi: 10.7498/aps.59.3523
    [13] 鲁远甫, 谢仕永, 薄勇, 崔前进, 宗楠, 高宏伟, 彭钦军, 崔大复, 许祖彦. 高功率准连续波腔内和频全固态黄光激光器. 物理学报, 2009, 58(2): 970-974. doi: 10.7498/aps.58.970
    [14] 周丽丹, 粟敬钦, 李平, 刘兰琴, 王文义, 王方, 莫磊, 程文雍, 张小民. 高功率固体激光装置光学元件“缺陷”分布的功率谱密度方法及等效求法. 物理学报, 2009, 58(9): 6279-6284. doi: 10.7498/aps.58.6279
    [15] 丁 莉, 刘代中, 高妍琦, 朱宝强, 朱 俭, 彭增云, 朱健强, 俞立钧. 高功率激光装置光束准直系统新型远场监测技术. 物理学报, 2008, 57(9): 5713-5717. doi: 10.7498/aps.57.5713
    [16] 姚 欣, 高福华, 温圣林, 张怡霄, 李剑峰, 郭永康. 谐波分离和光束取样集成光学元件强激光近场调制及损伤特性研究. 物理学报, 2007, 56(12): 6945-6953. doi: 10.7498/aps.56.6945
    [17] 郭少锋, 林文雄, 陆启生, 陈 燧, 林宗志, 邓少永, 朱永祥. 熔融石英玻璃受激布里渊散射效应实验研究. 物理学报, 2007, 56(4): 2218-2222. doi: 10.7498/aps.56.2218
    [18] 梁丽萍, 徐 耀, 张 磊, 吴 东, 孙予罕, 李志宏, 吴忠华. 溶胶-凝胶方法制备ZrO2及聚合物掺杂ZrO2单层光学增反射膜. 物理学报, 2006, 55(8): 4371-4382. doi: 10.7498/aps.55.4371
    [19] 梁丽萍, 张 磊, 徐 耀, 章 斌, 吴 东, 孙予罕, 蒋晓东, 魏晓峰, 李志宏, 吴忠华. PVP掺杂-ZrO2溶胶-凝胶工艺制备多层激光高反射膜的研究. 物理学报, 2006, 55(11): 6175-6184. doi: 10.7498/aps.55.6175
    [20] 张钧, 裴文兵, 古培俊, 常铁强. 高功率斜入射激光与高Z靶耦合非局域吸收的理论模型. 物理学报, 1995, 44(12): 1936-1945. doi: 10.7498/aps.44.1936
计量
  • 文章访问数:  5201
  • PDF下载量:  299
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-13
  • 修回日期:  2016-05-13
  • 刊出日期:  2016-07-05

/

返回文章
返回