搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蛋白质结构预测

邓海游 贾亚 张阳

引用本文:
Citation:

蛋白质结构预测

邓海游, 贾亚, 张阳

Protein structure prediction

Deng Hai-You, Jia Ya, Zhang Yang
PDF
导出引用
  • 从氨基酸序列出发预测蛋白质的三维结构是目前计算生物学和生物物理学领域最具挑战性和影响力的研究方向之一. 本文从结构预测的研究背景出发,简要介绍了它的理论意义、应用需求及基本现状;并根据结构预测的一般步骤,依次介绍了构象初始化、构象搜索、结构筛选、全原子结构重建、结构优化等基本预测过程;随后分基于模板和无模板两类,各列举了几种具有代表性的结构预测方法;最后对该领域的盛事国际蛋白质结构预测技术评估大赛(CASP)做了简单介绍.
    Predicting 3D structure of proteins from the amino acid sequences is one of the most important unsolved problems in computational biology and biophysics. This review article attempts to introduce the most recent effort and progress on this problem. After a brief introduction of the background and basic concepts involved in protein structure prediction, we went through the specific steps that have been taken by most typical structural modeling approaches, including fold recognition, model initialization, conformational search, model selection, and atomic-level structure refinement. Several representative structure prediction methods were introduced in detail, including those from both template-based modeling and ab initio folding approaches. Finally, we overview the results shown in the community-wide Critical Assessment of protein Structure Prediction (CASP) experiments that have been developed for benchmarking the state of the art of the field.
      通信作者: 张阳, zhng@umich.edu
    • 基金项目: 国家自然科学基金(批准号:11547255,11474117)、中央高校基本科研业务费专项资金(批准号:2662015BQ045)和美国国立卫生研究院(批准号:GM083107,GM116960)资助的课题.
      Corresponding author: Zhang Yang, zhng@umich.edu
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11547255, 11474117), the Fundamental Research Funds for the Central Universities, China (Grant No. 2662015BQ045) and the National Institute of General Medical Sciences (GM083107, GM116960).
    [1]

    Kolata G 1986 Science 233 1037

    [2]

    Consortium U 2015 Nucleic Acids Res. 43 D204

    [3]

    Berman H M, Westbrook J, Feng Z, Gilliland G, Bhat T N, Weissig H, Shindyalov I N, Bourne P E 2000 Nucleic Acids Res. 28 235

    [4]

    Anfinsen C B 1973 Science 181 223

    [5]

    Bowie J U, Luthy R, Eisenberg D 1991 Science 253 164

    [6]

    Jones D, Thornton J 1993 J. Comput. Aided Mol. Des. 7 439

    [7]

    Jones D T, Taylor W R, Thornton J M 1992 Nature 358 86

    [8]

    Jones D T 1999 J. Mol. Biol. 287 797

    [9]

    Chothia C 1992 Nature. 357 543

    [10]

    Zhang Y, Skolnick J 2005 Nucleic Acids Res. 33 2302

    [11]

    Huang Y J P, Mao B C, Aramini J M, Montelione G T 2014 Proteins 82 43

    [12]

    Tai C H, Bai H J, Taylor T J, Lee B 2014 Proteins 82 57

    [13]

    Moult J 2005 Curr. Opin. Struct. Biol. 15 285

    [14]

    Kryshtafovych A, Fidelis K, Moult J 2010 Introduction to Protein Structure Prediction: Methods and Algorithms (Hoboken: John Wiley Sons, Inc.) pp15-32

    [15]

    Needleman S B, Wunsch C D 1970 J. Mol. Biol. 48 443

    [16]

    Smith T F, Waterman M S 1981 J. Mol. Biol. 147 195

    [17]

    Altschul S F, Madden T L, Schffer A A, Zhang J, Zhang Z, Miller W, Lipman D J 1997 Nucleic Acids Res. 25 3389

    [18]

    Rohl C A, Strauss C E, Misura K M, Baker D 2004 Methods Enzymol. 383 66

    [19]

    Xu D, Zhang Y 2012 Proteins 80 1715

    [20]

    Dill K A, MacCallum J L 2012 Science 338 1042

    [21]

    Pearlman D A, Case D A, Caldwell J W, Ross W S, Iii T E C, Debolt S, Ferguson D, Seibel G, Kollman P 1995 Comput. Phys. Commun. 91 1

    [22]

    Brooks B R, Bruccoleri R E, Olafson B D, States D J, Swaminathan S, Karplus M 1983 J. Comput. Chem. 4 187

    [23]

    Tanaka S, Scheraga H A 1976 Macromolecules. 9 945

    [24]

    Miyazawa S, Jernigan R L 1984 Macromolecules. 18 534

    [25]

    Sippl M J 1990 J. Mol. Biol. 213 859

    [26]

    Samudrala R, Moult J 1998 J. Mol. Biol. 275 895

    [27]

    Lu H, Skolnick J 2001 Proteins. 44 223

    [28]

    Zhou H, Zhou Y 2002 Protein Sci. 11 2714

    [29]

    Rykunov D, Fiser A 2010 BMC Bioinformatics 11 1

    [30]

    Deng H, Jia Y, Wei Y, Zhang Y 2012 Proteins 80 2311

    [31]

    Van Gunsteren W F, Bakowies D, Baron R, Chandrasekhar I, Christen M, Daura X, Gee P, Geerke D P, Gltli A, Hnenberger P H 2006 Angew. Chem. Int. Edit 45 4064

    [32]

    Sugita Y, Okamoto Y 1999 Chem. Phys. Lett. 314 141

    [33]

    Hansmann U H E, Okamoto Y 1999 Curr. Opin. Struct. Biol. 9 177

    [34]

    Li Z, Scheraga H A 1987 Proc. Natl. Acad. Sci. 84 6611

    [35]

    Kirkpatrick S C, Gelatt C D, Vecchi M P 1983 Science. 220 671

    [36]

    Swendsen R H, Wang J S 1986 Phys. Rev. Lett. 57 2607

    [37]

    Kihara D, Lu H, Kolinski A, Skolnick J 2001 Proc. Natl. Acad. Sci. 98 10125

    [38]

    Kryshtafovych A, Barbato A, Fidelis K, Monastyrskyy B, Schwede T, Tramontano A 2014 Proteins. 82 112

    [39]

    Samudrala R, Levitt M 2000 Protein Sci. 9 1399

    [40]

    Tsai J, Bonneau R, Morozov A V, Kuhlman B, Rohl C A, Baker D 2003 Proteins. 53 76

    [41]

    Deng H, Jia Y, Zhang Y 2016 Bioinformatics. 32 378

    [42]

    Shortle D, Simons K T, Baker D 1998 Proc. Natl. Acad. Sci. 95 11158

    [43]

    Zhang Y, Skolnick J 2004 J. Comput. Chem. 25 865

    [44]

    Kozakov D, Clodfelter K H, Vajda S, Camacho C J 2005 Biophys. J. 89 867

    [45]

    Maupetit J, Gautier R, Tuffery P 2006 Nucleic Acids Res. 34 W147

    [46]

    Gront D, Kmiecik S, Kolinski A 2007 J. Comput. Chem. 28 1593

    [47]

    Rotkiewicz P, Skolnick J 2008 J. Comput. Chem. 29 1460

    [48]

    Li Y Q, Zhang Y 2009 Proteins. 76 665

    [49]

    Dunbrack R L, Karplus M 1993 J. Mol. Biol. 230 543

    [50]

    Krivov G G, Shapovalov M V, Dunbrack R L 2009 Proteins. 77778

    [51]

    Canutescu A A, Shelenkov A A, Dunbrack R L 2003 Protein Sci. 12 2001

    [52]

    Xu J 2005 Research in computational molecular biology Cambridge May 14-18 423

    [53]

    Miao Z, Cao Y, Jiang T 2011 Bioinformatics. 27 3117

    [54]

    Wu S, Skolnick J, Zhang Y 2007 BMC Biol. 5 17

    [55]

    Xu D, Zhang Y 2011 Biophys. J. 101 2525

    [56]

    Zhang J, Liang Y, Zhang Y 2011 Structure. 19 1784

    [57]

    MacCallum J L, Prez A, Schnieders M J, Hua L, Jacobson M P, Dill K A 2011 Proteins 79 74

    [58]

    Nugent T, Cozzetto D, Jones D T 2014 Proteins. 82 98

    [59]

    Modi V, Xu Q, Sam A, Roland L, Dunbrack J 2016 Proteins. 0 00

    [60]

    Moult J, Fidelis K, Kryshtafovych A, Schwede T, Tramontano A 2014 Proteins. 82 1

    [61]

    Moult J, Fidelis K, Kryshtafovych A, Schwede T, Tramontano A 2016 Proteins 0

    [62]

    Guex N, Peitsch M C 1997 Electrophoresis. 18 2714

    [63]

    Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino T G, Bertoni M, Bordoli L 2014 Nucleic Acids Res. 42 252

    [64]

    Altschul S F, Madden T L, Schffer A A, Zhang J, Zhang Z, Miller W, Lipman D J 1997 Nucleic Acids Res. 25 3389

    [65]

    Remmert M, Biegert A, Hauser A, Sding J 2011 Nature Methods. 9 173

    [66]

    Benkert P, Knzli M, Schwede T 2009 Nucleic Acids Res. 37 W510

    [67]

    Haas J, Roth S, Arnold K, Kiefer F, Schmidt T, Bordoli L, Schwede T 2013 Databsae Oxford. 2013 bat031

    [68]

    Sali A, Blundell T L 1993 J. Mol. Biol. 234 779

    [69]

    Fiser A, Do R K, Sali A 2000 Protein Sci. 9 1753

    [70]

    Shen M y, Sali A 2006 Protein Sci. 15 2507

    [71]

    Kuntal B K, Aparoy P, Reddanna P 2009 BMC Res. Notes. 3 1

    [72]

    Roy A, Kucukural A, Zhang Y 2010 Nat. Protoc. 5 725

    [73]

    Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y 2014 Nature Methods. 12 127

    [74]

    Wu S, Zhang Y 2007 Nucleic Acids Res. 35 3375

    [75]

    Simons K T, Kooperberg C, Huang E, Baker D 1997 J. Mol. Biol. 268 209

    [76]

    Cheng J, Randall A Z, Sweredoski M J, Baldi P 2005 Nucleic Acids Res. 33 72

    [77]

    Lee J, Kim S Y, Joo K, Kim I, Lee J 2004 Proteins. 56 704

    [78]

    Jones, David T 2001 Proteins. Suppl 5 127

    [79]

    Kryshtafovych A, Monastyrskyy B, Fidelis K 2014 Proteins. 82 7

    [80]

    Monastyrskyy B, D'Andrea D, Fidelis K, Tramontano A, Kryshtafovych A 2014 Proteins. 82 138

    [81]

    Monastyrskyy B, Kryshtafovych A, Moult J, Tramontano A, Fidelis K 2014 Proteins. 82 127

    [82]

    Zhang Y 2009 Curr. Opin. Struct. Biol. 19 145

  • [1]

    Kolata G 1986 Science 233 1037

    [2]

    Consortium U 2015 Nucleic Acids Res. 43 D204

    [3]

    Berman H M, Westbrook J, Feng Z, Gilliland G, Bhat T N, Weissig H, Shindyalov I N, Bourne P E 2000 Nucleic Acids Res. 28 235

    [4]

    Anfinsen C B 1973 Science 181 223

    [5]

    Bowie J U, Luthy R, Eisenberg D 1991 Science 253 164

    [6]

    Jones D, Thornton J 1993 J. Comput. Aided Mol. Des. 7 439

    [7]

    Jones D T, Taylor W R, Thornton J M 1992 Nature 358 86

    [8]

    Jones D T 1999 J. Mol. Biol. 287 797

    [9]

    Chothia C 1992 Nature. 357 543

    [10]

    Zhang Y, Skolnick J 2005 Nucleic Acids Res. 33 2302

    [11]

    Huang Y J P, Mao B C, Aramini J M, Montelione G T 2014 Proteins 82 43

    [12]

    Tai C H, Bai H J, Taylor T J, Lee B 2014 Proteins 82 57

    [13]

    Moult J 2005 Curr. Opin. Struct. Biol. 15 285

    [14]

    Kryshtafovych A, Fidelis K, Moult J 2010 Introduction to Protein Structure Prediction: Methods and Algorithms (Hoboken: John Wiley Sons, Inc.) pp15-32

    [15]

    Needleman S B, Wunsch C D 1970 J. Mol. Biol. 48 443

    [16]

    Smith T F, Waterman M S 1981 J. Mol. Biol. 147 195

    [17]

    Altschul S F, Madden T L, Schffer A A, Zhang J, Zhang Z, Miller W, Lipman D J 1997 Nucleic Acids Res. 25 3389

    [18]

    Rohl C A, Strauss C E, Misura K M, Baker D 2004 Methods Enzymol. 383 66

    [19]

    Xu D, Zhang Y 2012 Proteins 80 1715

    [20]

    Dill K A, MacCallum J L 2012 Science 338 1042

    [21]

    Pearlman D A, Case D A, Caldwell J W, Ross W S, Iii T E C, Debolt S, Ferguson D, Seibel G, Kollman P 1995 Comput. Phys. Commun. 91 1

    [22]

    Brooks B R, Bruccoleri R E, Olafson B D, States D J, Swaminathan S, Karplus M 1983 J. Comput. Chem. 4 187

    [23]

    Tanaka S, Scheraga H A 1976 Macromolecules. 9 945

    [24]

    Miyazawa S, Jernigan R L 1984 Macromolecules. 18 534

    [25]

    Sippl M J 1990 J. Mol. Biol. 213 859

    [26]

    Samudrala R, Moult J 1998 J. Mol. Biol. 275 895

    [27]

    Lu H, Skolnick J 2001 Proteins. 44 223

    [28]

    Zhou H, Zhou Y 2002 Protein Sci. 11 2714

    [29]

    Rykunov D, Fiser A 2010 BMC Bioinformatics 11 1

    [30]

    Deng H, Jia Y, Wei Y, Zhang Y 2012 Proteins 80 2311

    [31]

    Van Gunsteren W F, Bakowies D, Baron R, Chandrasekhar I, Christen M, Daura X, Gee P, Geerke D P, Gltli A, Hnenberger P H 2006 Angew. Chem. Int. Edit 45 4064

    [32]

    Sugita Y, Okamoto Y 1999 Chem. Phys. Lett. 314 141

    [33]

    Hansmann U H E, Okamoto Y 1999 Curr. Opin. Struct. Biol. 9 177

    [34]

    Li Z, Scheraga H A 1987 Proc. Natl. Acad. Sci. 84 6611

    [35]

    Kirkpatrick S C, Gelatt C D, Vecchi M P 1983 Science. 220 671

    [36]

    Swendsen R H, Wang J S 1986 Phys. Rev. Lett. 57 2607

    [37]

    Kihara D, Lu H, Kolinski A, Skolnick J 2001 Proc. Natl. Acad. Sci. 98 10125

    [38]

    Kryshtafovych A, Barbato A, Fidelis K, Monastyrskyy B, Schwede T, Tramontano A 2014 Proteins. 82 112

    [39]

    Samudrala R, Levitt M 2000 Protein Sci. 9 1399

    [40]

    Tsai J, Bonneau R, Morozov A V, Kuhlman B, Rohl C A, Baker D 2003 Proteins. 53 76

    [41]

    Deng H, Jia Y, Zhang Y 2016 Bioinformatics. 32 378

    [42]

    Shortle D, Simons K T, Baker D 1998 Proc. Natl. Acad. Sci. 95 11158

    [43]

    Zhang Y, Skolnick J 2004 J. Comput. Chem. 25 865

    [44]

    Kozakov D, Clodfelter K H, Vajda S, Camacho C J 2005 Biophys. J. 89 867

    [45]

    Maupetit J, Gautier R, Tuffery P 2006 Nucleic Acids Res. 34 W147

    [46]

    Gront D, Kmiecik S, Kolinski A 2007 J. Comput. Chem. 28 1593

    [47]

    Rotkiewicz P, Skolnick J 2008 J. Comput. Chem. 29 1460

    [48]

    Li Y Q, Zhang Y 2009 Proteins. 76 665

    [49]

    Dunbrack R L, Karplus M 1993 J. Mol. Biol. 230 543

    [50]

    Krivov G G, Shapovalov M V, Dunbrack R L 2009 Proteins. 77778

    [51]

    Canutescu A A, Shelenkov A A, Dunbrack R L 2003 Protein Sci. 12 2001

    [52]

    Xu J 2005 Research in computational molecular biology Cambridge May 14-18 423

    [53]

    Miao Z, Cao Y, Jiang T 2011 Bioinformatics. 27 3117

    [54]

    Wu S, Skolnick J, Zhang Y 2007 BMC Biol. 5 17

    [55]

    Xu D, Zhang Y 2011 Biophys. J. 101 2525

    [56]

    Zhang J, Liang Y, Zhang Y 2011 Structure. 19 1784

    [57]

    MacCallum J L, Prez A, Schnieders M J, Hua L, Jacobson M P, Dill K A 2011 Proteins 79 74

    [58]

    Nugent T, Cozzetto D, Jones D T 2014 Proteins. 82 98

    [59]

    Modi V, Xu Q, Sam A, Roland L, Dunbrack J 2016 Proteins. 0 00

    [60]

    Moult J, Fidelis K, Kryshtafovych A, Schwede T, Tramontano A 2014 Proteins. 82 1

    [61]

    Moult J, Fidelis K, Kryshtafovych A, Schwede T, Tramontano A 2016 Proteins 0

    [62]

    Guex N, Peitsch M C 1997 Electrophoresis. 18 2714

    [63]

    Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino T G, Bertoni M, Bordoli L 2014 Nucleic Acids Res. 42 252

    [64]

    Altschul S F, Madden T L, Schffer A A, Zhang J, Zhang Z, Miller W, Lipman D J 1997 Nucleic Acids Res. 25 3389

    [65]

    Remmert M, Biegert A, Hauser A, Sding J 2011 Nature Methods. 9 173

    [66]

    Benkert P, Knzli M, Schwede T 2009 Nucleic Acids Res. 37 W510

    [67]

    Haas J, Roth S, Arnold K, Kiefer F, Schmidt T, Bordoli L, Schwede T 2013 Databsae Oxford. 2013 bat031

    [68]

    Sali A, Blundell T L 1993 J. Mol. Biol. 234 779

    [69]

    Fiser A, Do R K, Sali A 2000 Protein Sci. 9 1753

    [70]

    Shen M y, Sali A 2006 Protein Sci. 15 2507

    [71]

    Kuntal B K, Aparoy P, Reddanna P 2009 BMC Res. Notes. 3 1

    [72]

    Roy A, Kucukural A, Zhang Y 2010 Nat. Protoc. 5 725

    [73]

    Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y 2014 Nature Methods. 12 127

    [74]

    Wu S, Zhang Y 2007 Nucleic Acids Res. 35 3375

    [75]

    Simons K T, Kooperberg C, Huang E, Baker D 1997 J. Mol. Biol. 268 209

    [76]

    Cheng J, Randall A Z, Sweredoski M J, Baldi P 2005 Nucleic Acids Res. 33 72

    [77]

    Lee J, Kim S Y, Joo K, Kim I, Lee J 2004 Proteins. 56 704

    [78]

    Jones, David T 2001 Proteins. Suppl 5 127

    [79]

    Kryshtafovych A, Monastyrskyy B, Fidelis K 2014 Proteins. 82 7

    [80]

    Monastyrskyy B, D'Andrea D, Fidelis K, Tramontano A, Kryshtafovych A 2014 Proteins. 82 138

    [81]

    Monastyrskyy B, Kryshtafovych A, Moult J, Tramontano A, Fidelis K 2014 Proteins. 82 127

    [82]

    Zhang Y 2009 Curr. Opin. Struct. Biol. 19 145

  • [1] 张嘉晖. 蛋白质计算中的机器学习. 物理学报, 2024, 73(6): 069301. doi: 10.7498/aps.73.20231618
    [2] 吕行, 富容国, 常本康, 郭欣, 王芝. 透射式GaAs光电阴极性能提高以及结构优化. 物理学报, 2024, 73(3): 037801. doi: 10.7498/aps.73.20231542
    [3] 杨章章, 刘丽, 万致涛, 付佳, 樊群超, 谢锋, 张燚, 马杰. 结合机器学习算法提高从头算方法对HF/HBr/H35Cl/Na35Cl振动能谱的预测性能. 物理学报, 2023, 72(7): 073101. doi: 10.7498/aps.72.20221953
    [4] 刘栋, 崔新月, 王浩东, 张贵军. 蛋白质结构模型质量评估方法综述. 物理学报, 2023, 72(24): 248702. doi: 10.7498/aps.72.20231071
    [5] 罗方芳, 蔡志涛, 黄艳东. 蛋白质pKa预测模型研究进展. 物理学报, 2023, 72(24): 248704. doi: 10.7498/aps.72.20231356
    [6] 吴健, 韩文, 程珍珍, 杨彬, 孙利利, 王迪, 朱程鹏, 张勇, 耿明昕, 景龑. 基于流体模型的碳纳米管电离式传感器的结构优化方法. 物理学报, 2021, 70(9): 090701. doi: 10.7498/aps.70.20201828
    [7] 史晨阳, 闵光宗, 刘向阳. 蛋白质基忆阻器研究进展. 物理学报, 2020, 69(17): 178702. doi: 10.7498/aps.69.20200617
    [8] 黄星榞, 隋明宇, 侯文清, 李明, 陆颖, 徐春华. RecA蛋白介导同源重组的步进式链交换. 物理学报, 2020, 69(20): 208706. doi: 10.7498/aps.69.20200959
    [9] 宋婷, 孙小伟, 魏小平, 欧阳玉花, 张春林, 郭鹏, 赵炜. 方镁石高压结构预测和高温结构稳定性研究. 物理学报, 2019, 68(12): 126201. doi: 10.7498/aps.68.20190204
    [10] 杨李, 宋玉蓉, 李因伟. 考虑边聚类与扩散特性的信息传播网络结构优化算法. 物理学报, 2018, 67(19): 190502. doi: 10.7498/aps.67.20180395
    [11] 袁飞, 张传彪, 周昕, 黎明. 基于氨基酸位置特异性的蛋白质Loop区结构预测改进方法. 物理学报, 2016, 65(15): 158701. doi: 10.7498/aps.65.158701
    [12] 王新迎, 韩敏. 多元混沌时间序列的多核极端学习机建模预测. 物理学报, 2015, 64(7): 070504. doi: 10.7498/aps.64.070504
    [13] 刘磊, 张锁良, 马亚坤, 吴国浩, 郑树凯, 王永青. 平板集热太阳热电器件建模及结构优化. 物理学报, 2013, 62(3): 038802. doi: 10.7498/aps.62.038802
    [14] 万茜, 周进, 刘曾荣. 蛋白质相互作用网络特征的理论再现. 物理学报, 2012, 61(1): 010203. doi: 10.7498/aps.61.010203
    [15] 陈熙, 林正喆, 殷聪, 汤浩, 胡蕴成, 宁西京. 铂纳米颗粒生长和表面结构的理论预测. 物理学报, 2012, 61(7): 076801. doi: 10.7498/aps.61.076801
    [16] 何文平, 王柳, 万仕全, 廖乐健, 何涛. 旱涝预测的演化建模方法. 物理学报, 2012, 61(11): 119201. doi: 10.7498/aps.61.119201
    [17] 丁玮, 江凡. 蛋白质晶体结构刚体优化的新方法. 物理学报, 2011, 60(4): 046103. doi: 10.7498/aps.60.046103
    [18] 刘廷禹, 张启仁, 庄松林. PbWO4晶体中铅空位相关的色心模型. 物理学报, 2005, 54(2): 863-867. doi: 10.7498/aps.54.863
    [19] 阎循领, 董瑞新, 王伯运, 胡海泉, 徐炳振. α螺旋蛋白质分子Raman光谱的选择定则. 物理学报, 1998, 47(12): 1963-1967. doi: 10.7498/aps.47.1963
    [20] 范海福. 对映相位双解和变型分量关系式——直接法在测定蛋白质晶体结构中的应用. 物理学报, 1984, 33(3): 399-407. doi: 10.7498/aps.33.399
计量
  • 文章访问数:  8921
  • PDF下载量:  820
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-22
  • 修回日期:  2016-07-21
  • 刊出日期:  2016-09-05

/

返回文章
返回