搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

H2+在强激光脉冲作用下的电离率和原子核间距的关系

俞祖卿 杨魏吉 何峰

H2+在强激光脉冲作用下的电离率和原子核间距的关系

俞祖卿, 杨魏吉, 何峰
PDF
导出引用
导出核心图
  • 本文利用蒙特卡罗方法模拟电子在激光场以及分子库仑势作用下的经典轨迹,研究了氢分子离子H2+的电离率和原子核间距的关系,为电荷共振电离增强现象提供了一种基于电子经典运动的解释.当原子核间距为5–6 a.u.时,H2+的电离率显著增大.电子的运动轨迹揭示此时电子先围绕其中一个原子核运动,在逐步获得越来越多的动能后,运动轨迹受到另一个原子核的强烈影响,最后电子逃逸原子核的束缚.原子核之间的库仑势垒和激光调制的库仑势垒的高度差与电离率的大小直接相关.
      通信作者: 何峰, fhe@sjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11322438,11574205)资助的课题.
    [1]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [2]

    L'Huillier, Schafer K J, Kulander K C 1991 J. Phys. B 24 3315

    [3]

    Zhou X X, Li B W 2001 Acta Phys. Sin. 50 1902 (in Chinese)[周效信, 李白文2001物理学报50 1902]

    [4]

    Sukharev M E, Krainov V P 1998 J. Opt. Soc. Am. B:Opt. Phys. 15 2201

    [5]

    Winter M, Schmidt R, Thumm U 2009 Phys. Rev. A 80 031401

    [6]

    Guo C, Li M, Nibarger J P, Gibson G N 1998 Phys. Rev. A 58 R4271

    [7]

    Gibson G N, Li M, Guo C, Neira J 1997 Phys. Rev. Lett. 79 2022

    [8]

    He F, Ruiz C, Becker A 2007 Phys. Rev. Lett. 99 083002

    [9]

    He F, Becker A, Thumm U 2008 Phys. Rev. Lett. 101 213002

    [10]

    He F, Thumm U 2010 Phys. Rev. A 81 053413

    [11]

    He F 2012 Phys. Rev. A 86 063415

    [12]

    Rankin R, Capjack C E, Burnett N H, Corkum P B 1991 Opt. Lett. 16 835

    [13]

    Fittinghoff D N, Bolton P R, Chang B, Kulander K C 1992 Phys. Rev. Lett. 69 2642

    [14]

    Paulus G G, Nicklich W, Zacher F, Lambropoulos P, Walther H 1996 J. Phys. B 29 L249

    [15]

    Yu X G, Wang B B, Chen T W, Li X F, Fu P M 2005 Acta Phys. Sin. 54 3542 (in Chinese)[余晓光, 王兵兵, 程太旺, 李晓峰, 傅盘铭2005物理学报54 3542]

    [16]

    Zuo T, Bandrauk A D 1995 Phys. Rev. A 52 R2511

    [17]

    Staudte A, Pavičič D, Chelkowski S, Zeidler D, Meckndel M, Niikura H, Schöffler M, Schössler S, Ulrich B, Rajeev P P, Weber Th, Jahnke T, Villeneuve D M, Bandrauk A D, Cocke C L, Corkum P B, Dörner R 2007 Phys. Rev. Lett. 98 073003

    [18]

    Ben-Itzhak I, Wang P Q, Sayler A M, Carnes K D, Leonard M, Esry B D, Alnaser A S, Ulrich B, Tong X M, Litvinyuk I V, Maharjan C M, Ranitovic P, Osipov T, Ghimire S, Chang Z, Cocke C L 2008 Phys. Rev. A 78 063419

    [19]

    Xu H, He F, Kielpinski D, Sang R T, Litvinyuk I V 2015 Sci. Rep. 5 13527

    [20]

    Xin L, Qin H C, Wu W Y, He F 2015 Phys. Rev. A 92 063803

    [21]

    Liu H, Li M, Xie X G, Wu C, Deng Y K, Wu C Y, Gong Q H, Liu Y Q 2015 Chin. Phys. Lett. 32 063301

    [22]

    Bocharova I, Karimi R, Penka E F, Brichta J P, Lassonde P, Fu X, Kieffer J C, Bandrauk A D, Litvinyuk I, Sanderson J, Légaré F 2011 Phys. Rev. Lett. 107 063201

    [23]

    Lötstedt E, Kato T, Yamanouchi K 2012 Phys. Rev. A 85 041402

    [24]

    Xi C, Chu S 2000 Phys. Rev. A 63 013414

    [25]

    Plummer M, McCann J F 1996 J. Phys. B:At. Mol. Opt. Phys. 29 4625

    [26]

    Tsogbayar T, Horbatsch M 2013 J. Phys. B 46 085004

    [27]

    Rzaewski K, Mewenstein, Salières P 1994 Phys. Rev. A 49 1196

    [28]

    Grobe R, Law C K 1991 Phys. Rev. A 44 R4114

    [29]

    Qu W X, Hu S X, Xu Z Z 1998 Acta Phys. Sin. 47 571 (in Chinese)[屈卫星, 胡素兴, 徐至展1998物理学报47 571]

    [30]

    Balcou Ph, L'Huillier A, Escande D 1996 Phys. Rev. A 53 3456

    [31]

    Bandarage G, Maquet A, Cooper J 1990 Phys. Rev. A 41 1744

    [32]

    Cocke S, Reichl L E 1996 Phys. Rev. A 53 1746

    [33]

    Chelkowski S, Foisy C, Bandrauk A D 1998 Phys. Rev. A 57 1176

    [34]

    Li M, Geng J W, Liu H, Deng Y, Wu C, Peng L Y, Gong Q H, Liu Y Q 2014 Phys. Rev. Lett. 112 113002

    [35]

    Duan Y W, Liu W K, Yuan J M 2000 Phys. Rev. A 61 053403

  • [1]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [2]

    L'Huillier, Schafer K J, Kulander K C 1991 J. Phys. B 24 3315

    [3]

    Zhou X X, Li B W 2001 Acta Phys. Sin. 50 1902 (in Chinese)[周效信, 李白文2001物理学报50 1902]

    [4]

    Sukharev M E, Krainov V P 1998 J. Opt. Soc. Am. B:Opt. Phys. 15 2201

    [5]

    Winter M, Schmidt R, Thumm U 2009 Phys. Rev. A 80 031401

    [6]

    Guo C, Li M, Nibarger J P, Gibson G N 1998 Phys. Rev. A 58 R4271

    [7]

    Gibson G N, Li M, Guo C, Neira J 1997 Phys. Rev. Lett. 79 2022

    [8]

    He F, Ruiz C, Becker A 2007 Phys. Rev. Lett. 99 083002

    [9]

    He F, Becker A, Thumm U 2008 Phys. Rev. Lett. 101 213002

    [10]

    He F, Thumm U 2010 Phys. Rev. A 81 053413

    [11]

    He F 2012 Phys. Rev. A 86 063415

    [12]

    Rankin R, Capjack C E, Burnett N H, Corkum P B 1991 Opt. Lett. 16 835

    [13]

    Fittinghoff D N, Bolton P R, Chang B, Kulander K C 1992 Phys. Rev. Lett. 69 2642

    [14]

    Paulus G G, Nicklich W, Zacher F, Lambropoulos P, Walther H 1996 J. Phys. B 29 L249

    [15]

    Yu X G, Wang B B, Chen T W, Li X F, Fu P M 2005 Acta Phys. Sin. 54 3542 (in Chinese)[余晓光, 王兵兵, 程太旺, 李晓峰, 傅盘铭2005物理学报54 3542]

    [16]

    Zuo T, Bandrauk A D 1995 Phys. Rev. A 52 R2511

    [17]

    Staudte A, Pavičič D, Chelkowski S, Zeidler D, Meckndel M, Niikura H, Schöffler M, Schössler S, Ulrich B, Rajeev P P, Weber Th, Jahnke T, Villeneuve D M, Bandrauk A D, Cocke C L, Corkum P B, Dörner R 2007 Phys. Rev. Lett. 98 073003

    [18]

    Ben-Itzhak I, Wang P Q, Sayler A M, Carnes K D, Leonard M, Esry B D, Alnaser A S, Ulrich B, Tong X M, Litvinyuk I V, Maharjan C M, Ranitovic P, Osipov T, Ghimire S, Chang Z, Cocke C L 2008 Phys. Rev. A 78 063419

    [19]

    Xu H, He F, Kielpinski D, Sang R T, Litvinyuk I V 2015 Sci. Rep. 5 13527

    [20]

    Xin L, Qin H C, Wu W Y, He F 2015 Phys. Rev. A 92 063803

    [21]

    Liu H, Li M, Xie X G, Wu C, Deng Y K, Wu C Y, Gong Q H, Liu Y Q 2015 Chin. Phys. Lett. 32 063301

    [22]

    Bocharova I, Karimi R, Penka E F, Brichta J P, Lassonde P, Fu X, Kieffer J C, Bandrauk A D, Litvinyuk I, Sanderson J, Légaré F 2011 Phys. Rev. Lett. 107 063201

    [23]

    Lötstedt E, Kato T, Yamanouchi K 2012 Phys. Rev. A 85 041402

    [24]

    Xi C, Chu S 2000 Phys. Rev. A 63 013414

    [25]

    Plummer M, McCann J F 1996 J. Phys. B:At. Mol. Opt. Phys. 29 4625

    [26]

    Tsogbayar T, Horbatsch M 2013 J. Phys. B 46 085004

    [27]

    Rzaewski K, Mewenstein, Salières P 1994 Phys. Rev. A 49 1196

    [28]

    Grobe R, Law C K 1991 Phys. Rev. A 44 R4114

    [29]

    Qu W X, Hu S X, Xu Z Z 1998 Acta Phys. Sin. 47 571 (in Chinese)[屈卫星, 胡素兴, 徐至展1998物理学报47 571]

    [30]

    Balcou Ph, L'Huillier A, Escande D 1996 Phys. Rev. A 53 3456

    [31]

    Bandarage G, Maquet A, Cooper J 1990 Phys. Rev. A 41 1744

    [32]

    Cocke S, Reichl L E 1996 Phys. Rev. A 53 1746

    [33]

    Chelkowski S, Foisy C, Bandrauk A D 1998 Phys. Rev. A 57 1176

    [34]

    Li M, Geng J W, Liu H, Deng Y, Wu C, Peng L Y, Gong Q H, Liu Y Q 2014 Phys. Rev. Lett. 112 113002

    [35]

    Duan Y W, Liu W K, Yuan J M 2000 Phys. Rev. A 61 053403

  • [1] 周旭聪, 石尚, 李飞, 孟庆田, 王兵兵. 利用双色激光场下域上电离谱鉴别H32+ 两种不同分子构型. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200013
    [2] 周瑜, 操礼阳, 马晓萍, 邓丽丽, 辛煜. 脉冲射频容性耦合氩等离子体的发射探针诊断. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191864
    [3] 周峰, 蔡宇, 邹德峰, 胡丁桐, 张亚静, 宋有建, 胡明列. 钛宝石飞秒激光器中孤子分子的内部动态探测. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191989
    [4] 罗菊, 韩敬华. 激光等离子体去除微纳颗粒的热力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191933
    [5] 刘家合, 鲁佳哲, 雷俊杰, 高勋, 林景全. 气体压强对纳秒激光诱导空气等离子体特性的影响. 物理学报, 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [6] 朱肖丽, 胡耀垓, 赵正予, 张援农. 钡和铯释放的电离层扰动效应对比. 物理学报, 2020, 69(2): 029401. doi: 10.7498/aps.69.20191266
    [7] 吴美梅, 张超, 张灿, 孙倩倩, 刘玫. 三维金字塔立体复合基底表面增强拉曼散射特性. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191636
    [8] 刘婉馨, 陈瑞, 刘永杰, 王俊峰, 韩小涛, 杨明. 脉冲强磁场下的电极化测量系统. 物理学报, 2020, 69(5): 057502. doi: 10.7498/aps.69.20191520
    [9] 翁明, 谢少毅, 殷明, 曹猛. 介质材料二次电子发射特性对微波击穿的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200026
    [10] 刘乃漳, 张雪冰, 姚若河. AlGaN/GaN 高电子迁移率器件外部边缘电容的物理模型. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191931
    [11] 罗端, 惠丹丹, 温文龙, 李立立, 辛丽伟, 钟梓源, 吉超, 陈萍, 何凯, 王兴, 田进寿. 超紧凑型飞秒电子衍射仪的设计. 物理学报, 2020, 69(5): 052901. doi: 10.7498/aps.69.20191157
    [12] 方文玉, 张鹏程, 赵军, 康文斌. H, F修饰单层GeTe的电子结构与光催化性质. 物理学报, 2020, 69(5): 056301. doi: 10.7498/aps.69.20191391
    [13] 张雅男, 詹楠, 邓玲玲, 陈淑芬. 利用银纳米立方增强效率的多层溶液加工白光有机发光二极管. 物理学报, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
    [14] 王晓雷, 赵洁惠, 李淼, 姜光科, 胡晓雪, 张楠, 翟宏琛, 刘伟伟. 基于人工表面等离激元的厚度渐变镀银条带探针实现太赫兹波的紧聚焦和场增强. 物理学报, 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [15] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞. 高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响. 物理学报, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [16] 王瑜浩, 武保剑, 郭飚, 文峰, 邱昆. 基于非线性光纤环形镜的少模脉冲幅度调制再生器研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191858
    [17] 刘厚通, 毛敏娟. 一种无需定标的地基激光雷达气溶胶消光系数精确反演方法. 物理学报, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [18] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军. 高功率垂直外腔面发射半导体激光器增益设计及制备. 物理学报, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [19] 王艳, 徐进良, 李文, 刘欢. 超临界Lennard-Jones流体结构特性分子动力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191591
    [20] 杨进, 陈俊, 王福地, 李颖颖, 吕波, 向东, 尹相辉, 张洪明, 符佳, 刘海庆, 臧庆, 储宇奇, 刘建文, 王勋禺, 宾斌, 何梁, 万顺宽, 龚学余, 叶民友. 东方超环上低杂波驱动等离子体环向旋转实验研究. 物理学报, 2020, 69(5): 055201. doi: 10.7498/aps.69.20191716
  • 引用本文:
    Citation:
计量
  • 文章访问数:  295
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-06
  • 修回日期:  2016-06-27
  • 刊出日期:  2016-10-20

H2+在强激光脉冲作用下的电离率和原子核间距的关系

  • 1. 上海交通大学物理与天文系, 激光等离子体教育部重点实验室, IFSA协同创新中心, 上海 200240
  • 通信作者: 何峰, fhe@sjtu.edu.cn
    基金项目: 

    国家自然科学基金(批准号:11322438,11574205)资助的课题.

摘要: 本文利用蒙特卡罗方法模拟电子在激光场以及分子库仑势作用下的经典轨迹,研究了氢分子离子H2+的电离率和原子核间距的关系,为电荷共振电离增强现象提供了一种基于电子经典运动的解释.当原子核间距为5–6 a.u.时,H2+的电离率显著增大.电子的运动轨迹揭示此时电子先围绕其中一个原子核运动,在逐步获得越来越多的动能后,运动轨迹受到另一个原子核的强烈影响,最后电子逃逸原子核的束缚.原子核之间的库仑势垒和激光调制的库仑势垒的高度差与电离率的大小直接相关.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回