搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

66116618 cm-1之间氨气光谱线强的测量

聂伟 阚瑞峰 许振宇 杨晨光 陈兵 夏晖晖 魏敏 陈祥 姚路 李杭 范雪丽 胡佳屹

66116618 cm-1之间氨气光谱线强的测量

聂伟, 阚瑞峰, 许振宇, 杨晨光, 陈兵, 夏晖晖, 魏敏, 陈祥, 姚路, 李杭, 范雪丽, 胡佳屹
PDF
导出引用
导出核心图
  • 在可调谐半导体激光吸收光谱(TDLAS)技术中,目标气体分子的吸收光谱参数,尤其是线强对温度、浓度的精确反演测量具有重要作用.HITRAN/GEISA/HITEMP等数据库中的光谱参数包含理论计算的结果,与实际情况存在相当的误差.本文采用TDLAS-波长扫描直接吸收技术测量了室温下氨气在6611-6618 cm-1之间的吸收光谱,利用Voigt线型多峰拟合方法获得了20条谱线在不同压强下的积分吸光度值,将获得的不同压强下的积分吸光度值进行线性拟合计算测量温度下的线强值,同时通过不确定度分析及误差传递计算了实验线强值的不确定度.通过与HITRAN 2012数据库中值进行对比,得出氨气在6611-6618 cm-1波段实验线强值与数据库中值相差0.51%-17.28%,且实验线强值的不确定度在0.81%-3.3%范围,小于HITRAN2012中线强的不确定度5%-10%范围.
      通信作者: 阚瑞峰, kanruifeng@aiofm.ac.cn
    • 基金项目: 国家重大科学仪器设备开发专项(批准号:2014YQ060537)资助的课题.
    [1]

    Wang F, Huang Q X, Li N, Yan J H, Chi Y, Cen K F 2007Acta Phys.Sin. 56 3867(in Chinese)[王飞, 黄群星, 李宁, 严建华, 池涌, 岑可法2007物理学报56 3867]

    [2]

    Yury A B, Anatoliy A K, Gerard W, Frank K T, Terence H R, John D B 2008LACSEA LMB4

    [3]

    Rafal L, Anatoliy A K, David M T, Terence H R, Steven S, Timothy B S, Frank K T 2011SPIE 7945K1

    [4]

    Rothman L S, Gordon I E, Babikov Y, et al. 2013J.Quant.Spectrosc.Radiat.Transfer 130 4

    [5]

    Jacquinet-Husso N, Scott N A, Chdin A, et al. 2008J.Quant.Spectrosc.Radiat.Transfer 109 1043

    [6]

    Rothman L S, Gordon I E, Barber R J, Dothe H, Gamache R R, Goldman A, Perevalov V I, Tashkun S A, Tennyson J 2010J.Quant.Spectrosc.Radiat.Transfer 111 2139

    [7]

    Paldus B A, Harb C C, Spence T G, Zare R N, Gmachl C, Capasso F, Sivco D L, Baillargeon J N, Hutchinson A L, Cho A Y 2000Opt.Lett. 25 666

    [8]

    Manne J, Sukhorukov O, Jger W, Tulip J 2006Appl.Opt. 45 9230

    [9]

    O'Leary D M, Orphal J, Ruth A A, Heitmann U, Chelin P, Fellows C E 2008J.Quant.Spectrosc.Radiat.Transfer 109 1004

    [10]

    Barton E J, Yurchenko S N, Tennyson J, Clausen S, Fateev A 2015J.Quant.Spectrosc.Radiat.Transfer 167 126

    [11]

    Guinet M, Jeseck P, Mondelain D, Pepin I, Janssen C, Camy-Peyret C, Mandin J Y 2011J.Quant.Spectrosc.Radiat.Transfer 112 1950

    [12]

    Naumenko O V, Bguier S, Leshchishina O M, Campargue A 2010J.Quant.Spectrosc.Radiat.Transfer 111 36

    [13]

    Webber M E, MacDonald T, Pushkarsky M B, Patel C K N, Zhao Y, Marcillac N, Mitloehner F M 2005Meas.Sci.Technol. 16 1547

    [14]

    Milton B, da Marcelo G S, Marcelo S S, Delson U S, Helion V, Andras M, Peter H 2006Appl.Opt. 45 4966

    [15]

    Maddaloni P, Gagliardi G, Malara P, de Natale P 2005Appl.Phys.B 80 141

    [16]

    Tiwari V B, Singh S, Mishra S R, Rawat H S, Mehendale S C 2006Appl.Phys.B 83 93

    [17]

    Michael E W, Douglas S B, Ronald K H 2001Appl.Opt. 40 2031

    [18]

    Xu L H, Liu Z, Yakovlev I, Tretyakov M Y, Lees R M 2004Infrared Phys.Technol. 45 31

    [19]

    Jia H, Zhao W, Cai T, Chen W, Zhang W, Gao X 2009J.Quant.Spectrosc.Radiat.Transfer 110 347

    [20]

    Gibb J S, Hancock G, Peverall R, Ritchie G A D, Russell L J 2004Eur.Phys.J.D 28 59

    [21]

    Sur R, Spearrin R M, Peng W Y, Strand C L, Jeffries J B, Enns G M, Hanson R K 2016J.Quant.Spectrosc.Radiat.Transfer 175 90

    [22]

    Romh J E, Cacciani P, Taher F, Čermk P, Coslou J, Khelkhal M A 2016J.Mol.Spectrosc. 4 1

    [23]

    He Y, Zhang Y J, Wang L M, You K 2012Opt.Technol. 38 421(in Chinese)[何莹, 张玉钧, 王立明, 尤坤2012光学技术38 421]

    [24]

    Schilt S 2010Appl.Phys.B 100 1

    [25]

    Zhou X 2005Ph.D.Dissertation(California:Stanford University)

    [26]

    Chen J Y, Liu J G, He Y B, Wang L, Jiang Q, Xu Z Y, Yao L, Yuan S, Ruan J, He J F, Dai Y H, Kan R F 2013Acta Phys.Sin. 62 224206(in Chinese)[陈玖英, 刘建国, 何亚柏, 王辽, 冮强, 许振宇, 姚路, 袁松, 阮俊, 何俊峰, 戴云海, 阚瑞峰2013物理学报62 224206]

    [27]

    Xu Z Y, Liu W Q, Liu J G, He J F, Yao L, Ruan J, Chen J Y, Li Han, Yuan S, Geng H, Kan R F 2012Acta Phys.Sin. 61 234204(in Chinese)[许振宇, 刘文清, 刘建国, 何俊峰, 姚路, 阮俊, 陈玖英, 李晗, 袁松, 耿辉, 阚瑞峰2012物理学报61 234204]

    [28]

    Goldenstein C S, Hanson R K 2015J.Quant.Spectrosc.Radiat.Transfer 15 127

    [29]

    Goldenstein C S, Jeffries J B, Hanson R K 2013J.Quant.Spectrosc.Radiat.Transfer 130 100

    [30]

    Pogny A Klein A, Ebert V 2015J.Quant.Spectrosc.Radiat.Transfer 165 108

  • [1]

    Wang F, Huang Q X, Li N, Yan J H, Chi Y, Cen K F 2007Acta Phys.Sin. 56 3867(in Chinese)[王飞, 黄群星, 李宁, 严建华, 池涌, 岑可法2007物理学报56 3867]

    [2]

    Yury A B, Anatoliy A K, Gerard W, Frank K T, Terence H R, John D B 2008LACSEA LMB4

    [3]

    Rafal L, Anatoliy A K, David M T, Terence H R, Steven S, Timothy B S, Frank K T 2011SPIE 7945K1

    [4]

    Rothman L S, Gordon I E, Babikov Y, et al. 2013J.Quant.Spectrosc.Radiat.Transfer 130 4

    [5]

    Jacquinet-Husso N, Scott N A, Chdin A, et al. 2008J.Quant.Spectrosc.Radiat.Transfer 109 1043

    [6]

    Rothman L S, Gordon I E, Barber R J, Dothe H, Gamache R R, Goldman A, Perevalov V I, Tashkun S A, Tennyson J 2010J.Quant.Spectrosc.Radiat.Transfer 111 2139

    [7]

    Paldus B A, Harb C C, Spence T G, Zare R N, Gmachl C, Capasso F, Sivco D L, Baillargeon J N, Hutchinson A L, Cho A Y 2000Opt.Lett. 25 666

    [8]

    Manne J, Sukhorukov O, Jger W, Tulip J 2006Appl.Opt. 45 9230

    [9]

    O'Leary D M, Orphal J, Ruth A A, Heitmann U, Chelin P, Fellows C E 2008J.Quant.Spectrosc.Radiat.Transfer 109 1004

    [10]

    Barton E J, Yurchenko S N, Tennyson J, Clausen S, Fateev A 2015J.Quant.Spectrosc.Radiat.Transfer 167 126

    [11]

    Guinet M, Jeseck P, Mondelain D, Pepin I, Janssen C, Camy-Peyret C, Mandin J Y 2011J.Quant.Spectrosc.Radiat.Transfer 112 1950

    [12]

    Naumenko O V, Bguier S, Leshchishina O M, Campargue A 2010J.Quant.Spectrosc.Radiat.Transfer 111 36

    [13]

    Webber M E, MacDonald T, Pushkarsky M B, Patel C K N, Zhao Y, Marcillac N, Mitloehner F M 2005Meas.Sci.Technol. 16 1547

    [14]

    Milton B, da Marcelo G S, Marcelo S S, Delson U S, Helion V, Andras M, Peter H 2006Appl.Opt. 45 4966

    [15]

    Maddaloni P, Gagliardi G, Malara P, de Natale P 2005Appl.Phys.B 80 141

    [16]

    Tiwari V B, Singh S, Mishra S R, Rawat H S, Mehendale S C 2006Appl.Phys.B 83 93

    [17]

    Michael E W, Douglas S B, Ronald K H 2001Appl.Opt. 40 2031

    [18]

    Xu L H, Liu Z, Yakovlev I, Tretyakov M Y, Lees R M 2004Infrared Phys.Technol. 45 31

    [19]

    Jia H, Zhao W, Cai T, Chen W, Zhang W, Gao X 2009J.Quant.Spectrosc.Radiat.Transfer 110 347

    [20]

    Gibb J S, Hancock G, Peverall R, Ritchie G A D, Russell L J 2004Eur.Phys.J.D 28 59

    [21]

    Sur R, Spearrin R M, Peng W Y, Strand C L, Jeffries J B, Enns G M, Hanson R K 2016J.Quant.Spectrosc.Radiat.Transfer 175 90

    [22]

    Romh J E, Cacciani P, Taher F, Čermk P, Coslou J, Khelkhal M A 2016J.Mol.Spectrosc. 4 1

    [23]

    He Y, Zhang Y J, Wang L M, You K 2012Opt.Technol. 38 421(in Chinese)[何莹, 张玉钧, 王立明, 尤坤2012光学技术38 421]

    [24]

    Schilt S 2010Appl.Phys.B 100 1

    [25]

    Zhou X 2005Ph.D.Dissertation(California:Stanford University)

    [26]

    Chen J Y, Liu J G, He Y B, Wang L, Jiang Q, Xu Z Y, Yao L, Yuan S, Ruan J, He J F, Dai Y H, Kan R F 2013Acta Phys.Sin. 62 224206(in Chinese)[陈玖英, 刘建国, 何亚柏, 王辽, 冮强, 许振宇, 姚路, 袁松, 阮俊, 何俊峰, 戴云海, 阚瑞峰2013物理学报62 224206]

    [27]

    Xu Z Y, Liu W Q, Liu J G, He J F, Yao L, Ruan J, Chen J Y, Li Han, Yuan S, Geng H, Kan R F 2012Acta Phys.Sin. 61 234204(in Chinese)[许振宇, 刘文清, 刘建国, 何俊峰, 姚路, 阮俊, 陈玖英, 李晗, 袁松, 耿辉, 阚瑞峰2012物理学报61 234204]

    [28]

    Goldenstein C S, Hanson R K 2015J.Quant.Spectrosc.Radiat.Transfer 15 127

    [29]

    Goldenstein C S, Jeffries J B, Hanson R K 2013J.Quant.Spectrosc.Radiat.Transfer 130 100

    [30]

    Pogny A Klein A, Ebert V 2015J.Quant.Spectrosc.Radiat.Transfer 165 108

  • [1] 寇添, 王海晏, 王芳, 吴学铭, 王领, 徐强. 机载多脉冲激光测距特性及其不确定度研究. 物理学报, 2015, 64(12): 120601. doi: 10.7498/aps.64.120601
    [2] 聂伟, 阚瑞峰, 许振宇, 姚路, 夏晖晖, 彭于权, 张步强, 何亚柏. 基于TDLAS技术的水汽低温吸收光谱参数测量. 物理学报, 2017, 66(20): 204204. doi: 10.7498/aps.66.204204
    [3] 李梦琪, 张玉钧, 何莹, 尤坤, 范博强, 余冬琪, 谢皓, 雷博恩, 李潇毅, 刘建国, 刘文清. 基于连续量子级联激光器的1103.4 cm–1处NH3混叠吸收光谱特性研究. 物理学报, 2020, 69(7): 074201. doi: 10.7498/aps.69.20191832
    [4] 王谦, 刘卫国, 巩蕾, 王利国, 李亚清. 双波长自由载流子吸收技术测量半导体载流子体寿命和表面复合速率. 物理学报, 2018, 67(21): 217201. doi: 10.7498/aps.67.20181509
    [5] 陈伯伦, 杨正华, 曹柱荣, 董建军, 侯立飞, 崔延莉, 江少恩, 易荣清, 李三伟, 刘慎业, 杨家敏. 同步辐射标定平面镜反射率不确定度分析方法研究. 物理学报, 2010, 59(10): 7078-7085. doi: 10.7498/aps.59.7078
    [6] 尚万里, 朱托, 况龙钰, 张文海, 赵阳, 熊刚, 易荣清, 李三伟, 杨家敏. 透射光栅谱仪测谱不确定度分析. 物理学报, 2013, 62(17): 170602. doi: 10.7498/aps.62.170602
    [7] 罗志勇, 杨丽峰, 陈允昌. 基于多光束干涉原理的相移算法研究. 物理学报, 2005, 54(7): 3051-3057. doi: 10.7498/aps.54.3051
    [8] 刘子龙, 陈锐, 廖宁放, 李在清, 王煜. 大幅提高视觉密度国家基准测量水平的方法研究. 物理学报, 2012, 61(23): 230601. doi: 10.7498/aps.61.230601
    [9] 王倩, 魏荣, 王育竹. 原子喷泉频标:原理与发展. 物理学报, 2018, 67(16): 163202. doi: 10.7498/aps.67.20180540
    [10] 丁武文, 孙利群, 衣路英. 基于可调谐半导体激光器吸收光谱的高灵敏度甲烷浓度遥测技术. 物理学报, 2017, 66(10): 100702. doi: 10.7498/aps.66.100702
    [11] 张亮, 刘建国, 阚瑞峰, 刘文清, 张玉钧, 许振宇, 陈军. 基于可调谐半导体激光吸收光谱技术的高速气流流速测量方法研究. 物理学报, 2012, 61(3): 034214. doi: 10.7498/aps.61.034214
    [12] 张志荣, 吴边, 夏滑, 庞涛, 王高旋, 孙鹏帅, 董凤忠, 王煜. 基于可调谐半导体激光吸收光谱技术的气体浓度测量温度影响修正方法研究. 物理学报, 2013, 62(23): 234204. doi: 10.7498/aps.62.234204
    [13] 耿辉, 刘建国, 张玉钧, 阚瑞峰, 许振宇, 姚路, 阮俊. 基于可调谐半导体激光吸收光谱的酒精蒸汽检测方法. 物理学报, 2014, 63(4): 043301. doi: 10.7498/aps.63.043301
    [14] 管林强, 邓昊, 姚路, 聂伟, 许振宇, 李想, 臧益鹏, 胡迈, 范雪丽, 杨晨光, 阚瑞峰. 基于可调谐激光吸收光谱技术的二硫化碳中红外光谱参数测量. 物理学报, 2019, 68(8): 084204. doi: 10.7498/aps.68.20182140
    [15] 张蔚泓, 牛中明, 王枫, 龚孝波, 孙保华. 宇宙核时钟不确定度的研究. 物理学报, 2012, 61(11): 112601. doi: 10.7498/aps.61.112601
    [16] 许振宇, 刘文清, 刘建国, 何俊峰, 姚路, 阮俊, 陈玖英, 李晗, 袁松, 耿辉, 阚瑞峰. 基于可调谐半导体激光器吸收光谱的温度测量方法研究. 物理学报, 2012, 61(23): 234204. doi: 10.7498/aps.61.234204
    [17] 曹亚南, 王贵师, 谈图, 汪磊, 梅教旭, 蔡廷栋, 高晓明. 基于可调谐二极管激光吸收光谱技术的密闭玻璃容器中水汽浓度及压力的探测. 物理学报, 2016, 65(8): 084202. doi: 10.7498/aps.65.084202
    [18] 赖天树, 刘鲁宁, 雷 亮, 寿 倩, 李熙莹, 王嘉辉, 林位株. 电子自旋偏振度及其弛豫过程的飞秒激光吸收光谱研究. 物理学报, 2005, 54(2): 967-971. doi: 10.7498/aps.54.967
    [19] 阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王 敏, 陈 军. 可调谐二极管激光吸收光谱法测量环境空气中的甲烷含量. 物理学报, 2005, 54(4): 1927-1930. doi: 10.7498/aps.54.1927
    [20] 王杨, 李昂, 谢品华, 陈浩, 徐晋, 吴丰成, 刘建国, 刘文清. 多轴差分吸收光谱技术反演气溶胶消光系数垂直廓线. 物理学报, 2013, 62(18): 180705. doi: 10.7498/aps.62.180705
  • 引用本文:
    Citation:
计量
  • 文章访问数:  618
  • PDF下载量:  202
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-21
  • 修回日期:  2016-11-30
  • 刊出日期:  2017-03-05

66116618 cm-1之间氨气光谱线强的测量

  • 1. 中国科学院合肥物质科学研究院, 安徽光学精密机械研究所, 环境光学与技术重点实验室, 合肥 230031;
  • 2. 中国科学技术大学, 合肥 230026
  • 通信作者: 阚瑞峰, kanruifeng@aiofm.ac.cn
    基金项目: 

    国家重大科学仪器设备开发专项(批准号:2014YQ060537)资助的课题.

摘要: 在可调谐半导体激光吸收光谱(TDLAS)技术中,目标气体分子的吸收光谱参数,尤其是线强对温度、浓度的精确反演测量具有重要作用.HITRAN/GEISA/HITEMP等数据库中的光谱参数包含理论计算的结果,与实际情况存在相当的误差.本文采用TDLAS-波长扫描直接吸收技术测量了室温下氨气在6611-6618 cm-1之间的吸收光谱,利用Voigt线型多峰拟合方法获得了20条谱线在不同压强下的积分吸光度值,将获得的不同压强下的积分吸光度值进行线性拟合计算测量温度下的线强值,同时通过不确定度分析及误差传递计算了实验线强值的不确定度.通过与HITRAN 2012数据库中值进行对比,得出氨气在6611-6618 cm-1波段实验线强值与数据库中值相差0.51%-17.28%,且实验线强值的不确定度在0.81%-3.3%范围,小于HITRAN2012中线强的不确定度5%-10%范围.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回