搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于原位X射线衍射技术的动态晶格响应测量方法研究

李俊 陈小辉 吴强 罗斌强 李牧 阳庆国 陶天炯 金柯 耿华运 谭叶 薛桃

引用本文:
Citation:

基于原位X射线衍射技术的动态晶格响应测量方法研究

李俊, 陈小辉, 吴强, 罗斌强, 李牧, 阳庆国, 陶天炯, 金柯, 耿华运, 谭叶, 薛桃

Experimental investigation on dynamic lattice response by in-situ Xray diffraction method

Li Jun, Chen Xiao-Hui, Wu Qiang, Luo Bin-Qiang, Li Mu, Yang Qing-Guo, Tao Tian-Jiong, Jin Ke, Geng Hua-Yun, Tan Ye, Xue Tao
PDF
导出引用
  • 获取动态压缩条件下结构演化过程是冲击相变及其动力学机理研究最为关注的基础问题之一.对此,基于激光驱动瞬态X射线衍射技术,通过系列实验的物理状态关联和抽运-探测时序控制,实现了静态与动态晶格衍射信号的同时获取,消除了不同实验的装置结构和样品差异带来的测量误差,建立了一种基于原位X射线衍射技术的动态晶格响应测量方法.利用上述实验方法,成功实现了激光冲击加载下[111]单晶铁晶格压缩过程的原位测量,获取弹性及塑性响应的晶格压缩度与宏观雨贡纽测量结果完全符合,从晶格层面证实了超快激光加载下的高屈服强度(雨贡纽弹性极限值大于6 GPa),以及可能与晶向效应或加载率效应相关的相变迟滞现象(至终态压力23.9 GPa仍为体心立方结构),相关物理机制仍有待进一步研究.上述测量方法的建立为后续开展相变动力学机理研究提供了可行的技术途径和重要的参考价值.
    Structure evolution under dynamic compression condition (high temperature, high pressure and high strain rate) is one of the most important problems in engineering and applied physics, which is vital for understanding the kinetic mechanism of shock-induced phase transition. In this work, an in-situ dynamic X-ray diffraction (DXRD) diagnostic method is established to probe the lattice response driven by shock waves. The geometry is suitable for the study of laser-shocked crystals. In order to eliminate the measurement error arising from the difference in experimental setup, the static and dynamic lattice diffraction signals are measured simultaneously in one shot by using a nanosecond burst of X-ray emitted from a laser-produced plasma. Experimental details in our investigation are as follows. 1) The laser driven shock wave transit time △ tShock and the shock pressure in sample are accurately determined from the shock-wave profile measurement by dual laser heterodyne velocimetry. 2) A laser pump-and-probe technique for adjusting the time-delay of DXRD diagnosis during △ tShock, with a series of repeated shock loadings is then employed to generate and measure the dynamic structure evolution. Using this method, the dynamic lattice response of[111] single-crystal iron is studied on Shenguang-Ⅱ facility. Single-shot diffraction patterns from both unshocked and shocked crystal are successfully obtained. An elastic-plastic transition process –elastic wave followed by a plastic wave– is observed in shocked[111] single-crystal iron on a lattice scale. The lattice compressibility values of the elastic wave and plastic wave are in agreement with those derived from the wave profiles. It is found that the Hugoniot elastic limit is measured to be about 6 GPa under nanosecond-pulsed laser shock compression. Such a high yield strength is consistent with recent laser ramp compression experimental results in polycrystalline Fe[Smith et al. 2011 J. Appl. Phys. 110 123515], suggesting that the peak pressure of elastic wave is dependent on the loading rate and the thickness of sample. Based on the analysis of diffraction patterns, the BCC phase is determined to be stable till 23.9 GPa, the highest pressure explored in this work, which might indicate that the phase transition strongly couples with the crystal orientation and loading rate. Some possible physical mechanisms remain to be further studied:whether the transition time hysteresis occurs or the metastable FCC phase exists in shocked[111] single crystal Fe, or the phase transition onset pressure increases under high strain-rate compression. Our DXRD results provide a primary experimental reference for the follow-up study on the phase kinetics.
      通信作者: 李俊, lijun102@caep.cn
    • 基金项目: 国家自然科学基金(批准号:11602251,11302202)和科学挑战专题(批准号:JCKY2016212A501)资助的课题.
      Corresponding author: Li Jun, lijun102@caep.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos.11602251,11302202) and the Science Challenge Project,China (Grant No.JCKY2016212A501).
    [1]

    Barker L M, Hollenbach R E 1974 J. Appl. Phys. 45 4872

    [2]

    Erskine D J, Nellis W J 1992 J. Appl. Phys. 71 4882

    [3]

    Hicks D G, Boehly T R, Celliers P M, Bradley D K, Eggert J H, McWilliams R S, Jeanloz R, Collins G W 2008 Phys. Rev. B 7 78 174102

    [4]

    Jensen B J, Gray Ⅲ G T, Hixson R S 2009 J. Appl. Phys. 105 103502

    [5]

    Li J, Zhou X M, Li J B, Li S N, Zhu W J, Wang X, Jing F Q 2007 Acta Phys. Sin. 56 6557 (in Chinese)[李俊, 周显明, 李加波, 李赛男, 祝文军, 王翔, 经福谦 2007 物理学报 56 6557]

    [6]

    Chen Y T, Tang X J, Li Q Z 2011 Acta Phys. Sin. 60 046401 (in Chinese)[陈永涛, 唐小军, 李庆忠 2011 物理学报 60 046401]

    [7]

    Song P, Cai L C, Li X Z, Tao T J, Zhao X W, Wang X J, Fang M L 2015 Acta Phys. Sin. 64 106401 (in Chinese)[宋萍, 蔡灵仓, 李欣竹, 陶天炯, 赵信文, 王学军, 方茂林 2015 物理学报 64 106401]

    [8]

    Shen G Y, Sinogeikin S 2015 Rev. Sci. Instrum. 86 071901

    [9]

    Tateno S, Hirose K, Ohishi Y, Tatsumi Y 2010 Science 330 359

    [10]

    Anzellini S, Dewaele A, Mezouar M, Loubeyre P, Morard G 2013 Science 340 464

    [11]

    Ding Y, Ahuja R, Shu J F, Chow P, Lou W, Mao H K 2007 Phys. Rev. Lett. 98 085502

    [12]

    Xu J A, Wang Y Y, Xu M H 1980 Acta Phys. Sin. 29 1063 (in Chinese)[徐济安, 王彦云, 徐敏华 1980 物理学报 29 1063]

    [13]

    Wu X, Qin S, Wu Z Y, Dong Y H, Liu J, Li X D 2004 Acta Phys. Sin. 53 1967 (in Chinese)[巫翔, 秦善, 吴自玉, 董宇辉, 刘景, 李晓东 2004 物理学报 53 1967]

    [14]

    Yaakobi B, Boehly T R, Meyerhofer D D, Collins T J B 2005 Phys. Rev. Lett. 95 075501

    [15]

    Kritcher A L, Neumayer P, Castor J, Döppner T, Falcone R W, Landen O L, Lee H J, Lee R W, Morse E C, Ng A, Pollaine S, Price D, Glenzer S H 2008 Science 322 69

    [16]

    Kalantar D H, Belak J F, Collins G W, Colvin J D, Davis H M, Effert J H, Germann T C, Hawreliak J, Holian B L, Kadau K, Lomdahl P S, Lorenzana H E, Meyers M A, Rosolankova K, Schneider M S, Sheppard J, Stölken J S, Wark J S 2005 Phys. Rev. Lett. 95 075502

    [17]

    Swift D C 2008 Rev. Sci. Instrum. 79 013906

    [18]

    Johnson Q, Mitchell A 1972 Phys. Rev. Lett. 29 1369

    [19]

    Gupta Y M, Zimmerman K A, Rigg P A, Zaretsky E B, Savage D M, Bellamy P M 1999 Rev. Sci. Instrum. 70 4008

    [20]

    Rigg P A, Gupta Y M 2001 Phys. Rev. B 63 094112

    [21]

    Turneaure S J, Gupta Y M, Rigg P 2009 J. Appl. Phys. 105 013544

    [22]

    Turneaure S J, Gupta Y M, Zimmerman K, Perkins K, Yoo C S, Shen G 2009 J. Appl. Phys. 105 053520

    [23]

    Gupta Y M, Turneaure S J, Perkins K, Zimmerman K, Arganbright N, Shen G, Chow P 2012 Rev. Sci. Instrum. 83 123905

    [24]

    Turneaure S J, Gupta Y M 2012 J. Appl. Phys. 111 026101

    [25]

    Kalantar D H, Chandler E A, Colvin J D, Lee R, Remington B A, Weber S V, Wiley L G, Hauer A, Wark J S, Loveridge A, Failor B H, Meyers M A, Ravichandran G 1999 Rev. Sci. Instrum. 70 629

    [26]

    Kalantar D H, Bringa H, Caturla M, Colvin J, Lorenz K T, Kumar M, Stölken J, Allen A M, Rosolankova K, Wark J S, Meyers M A, Schneider M, Boehly T R 2003 Rev. Sci. Instrum. 74 1929

    [27]

    Hawreliak J A, Kalantar D H, Stölken J S, Remington B A, Lorenzana H E, Wark J S 2008 Phys. Rev. B 78 220101

    [28]

    Hawreliak J A, El-Dasher B S, Lorenzana H E 2011 Phys. Rev. B 83 144114

    [29]

    Milathianaki D, Swift D C, Hawreliak J A, El-Dasher B S, McNaney J M, Lorenzana H E, Ditmire T 2012 Phys. Rev. B 86 014101

    [30]

    Denoeud A, Ozaki M, Benuzzi-Mounaix A, Uranishi M, Kondo Y, Kodama R, Brambrink E, Ravasio A, Bocoum M, Boudenne J M, Harmand M, Guyot F, Mazevet S, Riley D, Makita M, Sano T, Sakawa Y, Inubushi Y, Gregori G, Koenig M, Morard G 2016 PNAS 113 7745

    [31]

    Gorman M G, Briggs R, McBride E E, Higginbotham A, Arnold B, Eggert J H, Fratandouno D E, Galtier E, Lazickl A E, Lee H J, Liermann H P, Nagler B, Rothkirch A, Smith R F, Swift D C, Collins G W, Wark J S, McMahon M I 2015 Phys. Rev. Lett. 115 095701

    [32]

    Kraus D, Ravasio A, Gauthier M, Gericke D O, Vorberger J, Frydrych S, Helfrich J, Fletcher L B, Schaumann G, Nagler B, Barbrel B, Bachmann B, Gamboa E J, Göde S, Granados E, Gregori G, Lee H J, Neumayer P, Schumaker W, Döppner T, Falcone R W, Glenzer S H, Roth M 2016 Nature Communications 7 10970

    [33]

    Wang H R, Xiao S L, Yang Q G, Ye Y, Li M, Li J, Peng Q X, Li Z R 2014 High Power Laser and Particle Beams 26 024004 (in Chinese)[王海容, 肖沙里, 阳庆国, 叶雁, 李牧, 李俊, 彭其先, 李泽仁 2014 强激光与粒子束 26 024004]

    [34]

    Smith R F, Eggert J H, Rudd R E, Swift D C, Bolme C, Collins G W 2011 J. Appl. Phys. 110 123515

    [35]

    Ashitkov S I, Zhakhovsky V V, Inogamov N A, Komarov P S, Agranat M B, Kanel G I 2017 AIP Conf. Proc. 1793 100035

    [36]

    Kadau K, Germann T C, Lomdahl P S, Holian B L 2002 Science 296 1681

    [37]

    Kadau K, Germann T C, Lomdahl P S, Holian B L 2005 Phys. Rev. B 72 064210

    [38]

    Kadau K, Germann T C, Lomdahl P S, Albers R C, Wark J S, Higginbotham A, Holian B L 2007 Phys. Rev. Lett. 98 135701

    [39]

    Zaretsky E B, Kannel G I 2015 J. Appl. Phys. 117 195901

    [40]

    Smith R F, Eggert J H, Swift D C, Wang J, Duffy T S, Braun D G, Rudd R E, Reisman D B, Davis J P Knudson M D, Collins G W 2013 J. Appl. Phys. 114 223507

  • [1]

    Barker L M, Hollenbach R E 1974 J. Appl. Phys. 45 4872

    [2]

    Erskine D J, Nellis W J 1992 J. Appl. Phys. 71 4882

    [3]

    Hicks D G, Boehly T R, Celliers P M, Bradley D K, Eggert J H, McWilliams R S, Jeanloz R, Collins G W 2008 Phys. Rev. B 7 78 174102

    [4]

    Jensen B J, Gray Ⅲ G T, Hixson R S 2009 J. Appl. Phys. 105 103502

    [5]

    Li J, Zhou X M, Li J B, Li S N, Zhu W J, Wang X, Jing F Q 2007 Acta Phys. Sin. 56 6557 (in Chinese)[李俊, 周显明, 李加波, 李赛男, 祝文军, 王翔, 经福谦 2007 物理学报 56 6557]

    [6]

    Chen Y T, Tang X J, Li Q Z 2011 Acta Phys. Sin. 60 046401 (in Chinese)[陈永涛, 唐小军, 李庆忠 2011 物理学报 60 046401]

    [7]

    Song P, Cai L C, Li X Z, Tao T J, Zhao X W, Wang X J, Fang M L 2015 Acta Phys. Sin. 64 106401 (in Chinese)[宋萍, 蔡灵仓, 李欣竹, 陶天炯, 赵信文, 王学军, 方茂林 2015 物理学报 64 106401]

    [8]

    Shen G Y, Sinogeikin S 2015 Rev. Sci. Instrum. 86 071901

    [9]

    Tateno S, Hirose K, Ohishi Y, Tatsumi Y 2010 Science 330 359

    [10]

    Anzellini S, Dewaele A, Mezouar M, Loubeyre P, Morard G 2013 Science 340 464

    [11]

    Ding Y, Ahuja R, Shu J F, Chow P, Lou W, Mao H K 2007 Phys. Rev. Lett. 98 085502

    [12]

    Xu J A, Wang Y Y, Xu M H 1980 Acta Phys. Sin. 29 1063 (in Chinese)[徐济安, 王彦云, 徐敏华 1980 物理学报 29 1063]

    [13]

    Wu X, Qin S, Wu Z Y, Dong Y H, Liu J, Li X D 2004 Acta Phys. Sin. 53 1967 (in Chinese)[巫翔, 秦善, 吴自玉, 董宇辉, 刘景, 李晓东 2004 物理学报 53 1967]

    [14]

    Yaakobi B, Boehly T R, Meyerhofer D D, Collins T J B 2005 Phys. Rev. Lett. 95 075501

    [15]

    Kritcher A L, Neumayer P, Castor J, Döppner T, Falcone R W, Landen O L, Lee H J, Lee R W, Morse E C, Ng A, Pollaine S, Price D, Glenzer S H 2008 Science 322 69

    [16]

    Kalantar D H, Belak J F, Collins G W, Colvin J D, Davis H M, Effert J H, Germann T C, Hawreliak J, Holian B L, Kadau K, Lomdahl P S, Lorenzana H E, Meyers M A, Rosolankova K, Schneider M S, Sheppard J, Stölken J S, Wark J S 2005 Phys. Rev. Lett. 95 075502

    [17]

    Swift D C 2008 Rev. Sci. Instrum. 79 013906

    [18]

    Johnson Q, Mitchell A 1972 Phys. Rev. Lett. 29 1369

    [19]

    Gupta Y M, Zimmerman K A, Rigg P A, Zaretsky E B, Savage D M, Bellamy P M 1999 Rev. Sci. Instrum. 70 4008

    [20]

    Rigg P A, Gupta Y M 2001 Phys. Rev. B 63 094112

    [21]

    Turneaure S J, Gupta Y M, Rigg P 2009 J. Appl. Phys. 105 013544

    [22]

    Turneaure S J, Gupta Y M, Zimmerman K, Perkins K, Yoo C S, Shen G 2009 J. Appl. Phys. 105 053520

    [23]

    Gupta Y M, Turneaure S J, Perkins K, Zimmerman K, Arganbright N, Shen G, Chow P 2012 Rev. Sci. Instrum. 83 123905

    [24]

    Turneaure S J, Gupta Y M 2012 J. Appl. Phys. 111 026101

    [25]

    Kalantar D H, Chandler E A, Colvin J D, Lee R, Remington B A, Weber S V, Wiley L G, Hauer A, Wark J S, Loveridge A, Failor B H, Meyers M A, Ravichandran G 1999 Rev. Sci. Instrum. 70 629

    [26]

    Kalantar D H, Bringa H, Caturla M, Colvin J, Lorenz K T, Kumar M, Stölken J, Allen A M, Rosolankova K, Wark J S, Meyers M A, Schneider M, Boehly T R 2003 Rev. Sci. Instrum. 74 1929

    [27]

    Hawreliak J A, Kalantar D H, Stölken J S, Remington B A, Lorenzana H E, Wark J S 2008 Phys. Rev. B 78 220101

    [28]

    Hawreliak J A, El-Dasher B S, Lorenzana H E 2011 Phys. Rev. B 83 144114

    [29]

    Milathianaki D, Swift D C, Hawreliak J A, El-Dasher B S, McNaney J M, Lorenzana H E, Ditmire T 2012 Phys. Rev. B 86 014101

    [30]

    Denoeud A, Ozaki M, Benuzzi-Mounaix A, Uranishi M, Kondo Y, Kodama R, Brambrink E, Ravasio A, Bocoum M, Boudenne J M, Harmand M, Guyot F, Mazevet S, Riley D, Makita M, Sano T, Sakawa Y, Inubushi Y, Gregori G, Koenig M, Morard G 2016 PNAS 113 7745

    [31]

    Gorman M G, Briggs R, McBride E E, Higginbotham A, Arnold B, Eggert J H, Fratandouno D E, Galtier E, Lazickl A E, Lee H J, Liermann H P, Nagler B, Rothkirch A, Smith R F, Swift D C, Collins G W, Wark J S, McMahon M I 2015 Phys. Rev. Lett. 115 095701

    [32]

    Kraus D, Ravasio A, Gauthier M, Gericke D O, Vorberger J, Frydrych S, Helfrich J, Fletcher L B, Schaumann G, Nagler B, Barbrel B, Bachmann B, Gamboa E J, Göde S, Granados E, Gregori G, Lee H J, Neumayer P, Schumaker W, Döppner T, Falcone R W, Glenzer S H, Roth M 2016 Nature Communications 7 10970

    [33]

    Wang H R, Xiao S L, Yang Q G, Ye Y, Li M, Li J, Peng Q X, Li Z R 2014 High Power Laser and Particle Beams 26 024004 (in Chinese)[王海容, 肖沙里, 阳庆国, 叶雁, 李牧, 李俊, 彭其先, 李泽仁 2014 强激光与粒子束 26 024004]

    [34]

    Smith R F, Eggert J H, Rudd R E, Swift D C, Bolme C, Collins G W 2011 J. Appl. Phys. 110 123515

    [35]

    Ashitkov S I, Zhakhovsky V V, Inogamov N A, Komarov P S, Agranat M B, Kanel G I 2017 AIP Conf. Proc. 1793 100035

    [36]

    Kadau K, Germann T C, Lomdahl P S, Holian B L 2002 Science 296 1681

    [37]

    Kadau K, Germann T C, Lomdahl P S, Holian B L 2005 Phys. Rev. B 72 064210

    [38]

    Kadau K, Germann T C, Lomdahl P S, Albers R C, Wark J S, Higginbotham A, Holian B L 2007 Phys. Rev. Lett. 98 135701

    [39]

    Zaretsky E B, Kannel G I 2015 J. Appl. Phys. 117 195901

    [40]

    Smith R F, Eggert J H, Swift D C, Wang J, Duffy T S, Braun D G, Rudd R E, Reisman D B, Davis J P Knudson M D, Collins G W 2013 J. Appl. Phys. 114 223507

  • [1] 华颖鑫, 陈小辉, 李俊, 郝龙, 孙毅, 王玉峰, 耿华运. 钒的冲击熔化原位X射线衍射测量研究. 物理学报, 2022, 71(7): 076201. doi: 10.7498/aps.71.20212065
    [2] 陈小辉, 谭伯仲, 薛桃, 马云灿, 靳赛, 李志军, 辛越峰, 李晓亚, 李俊. 高压高应变率加载下多晶相变的原位X射线衍射. 物理学报, 2020, 69(24): 246201. doi: 10.7498/aps.69.20200929
    [3] 王玲, 王河锦, 李婷. 锐钛矿金红石的高温原位X射线衍射研究. 物理学报, 2013, 62(14): 146402. doi: 10.7498/aps.62.146402
    [4] 孙云, 王圣来, 顾庆天, 许心光, 丁建旭, 刘文洁, 刘光霞, 朱胜军. 利用高分辨X射线衍射研究磷酸二氢钾晶体晶格应变应力. 物理学报, 2012, 61(21): 210203. doi: 10.7498/aps.61.210203
    [5] 谈国太, 陈正豪. La1-xTexMnO3晶格结构的X射线粉末衍射分析. 物理学报, 2007, 56(3): 1702-1706. doi: 10.7498/aps.56.1702
    [6] 王玉田, 庄岩, 江德生, 杨小平, 姜晓明, 武家杨, 修立松, 郑文莉. 双势垒超晶格结构的同步辐射及X射线双晶衍射研究. 物理学报, 1996, 45(10): 1709-1716. doi: 10.7498/aps.45.1709
    [7] 徐政, 赵小如, 吴文彬, 孙学峰, 汪良斌, 周贵恩, 李晓光, 张裕恒. Bi2Sr2CaCu2Oy单晶调制结构的X射线衍射研究. 物理学报, 1996, 45(9): 1578-1585. doi: 10.7498/aps.45.1578
    [8] 郝建民, 陈济舟, 张世敏. 子晶格干涉畴尺寸不同对X射线衍射积分宽度与积分强度的影响. 物理学报, 1994, 43(5): 772-778. doi: 10.7498/aps.43.772
    [9] 汪卫华, 白海洋, 陈红, 张云, 王文魁. Ni在非晶Si中扩散机制的原位X射线衍射研究. 物理学报, 1993, 42(9): 1505-1509. doi: 10.7498/aps.42.1505
    [10] 李建华, 麦振洪, 崔树范. 应变弛豫InGaAs/GaAs超晶格的X射线双晶衍射及形貌研究. 物理学报, 1993, 42(9): 1485-1490. doi: 10.7498/aps.42.1485
    [11] 何贤昶, 吴自勤, 赵特秀, 吕智慧, 王晓平, 孙国喜. 多孔硅层晶格畸变的X射线双晶衍射研究. 物理学报, 1993, 42(6): 954-962. doi: 10.7498/aps.42.954
    [12] 白海洋, 陈红, 张云, 王文魁. Fe-Ti多层调制膜固态反应扩散的动态原位法X射线衍射研究. 物理学报, 1993, 42(7): 1134-1140. doi: 10.7498/aps.42.1134
    [13] 杨平. 均匀弯曲硅单晶X射线衍射行为. 物理学报, 1992, 41(2): 267-271. doi: 10.7498/aps.41.267
    [14] 朱南昌, 李润身, 许顺生. 半导体应变超晶格结构与界面的X射线双晶衍射研究. 物理学报, 1991, 40(3): 433-440. doi: 10.7498/aps.40.433
    [15] 田亮光, 朱南昌, 陈京一, 李润身, 许顺生, 周国良. 高完整GexSi1-x/Si应变超晶格的X射线双晶衍射研究. 物理学报, 1991, 40(3): 441-448. doi: 10.7498/aps.40.441
    [16] 周国良, 沈孝良, 盛篪, 蒋维栋, 俞鸣人. GexSi1-x/Si超晶格的X射线小角衍射分析. 物理学报, 1991, 40(1): 56-63. doi: 10.7498/aps.40.56
    [17] 白海洋;陈红;张云;王文魁. Fe-Ti多层调制膜固态反应扩散的动态原位法X射线衍射研究. 物理学报, 1991, 40(7): 1134-1140. doi: 10.7498/aps.40.1134
    [18] 赵庆兰, 黄依森. 三羟甲基甲胺单晶缺陷的X射线衍射形貌研究. 物理学报, 1990, 39(9): 1418-1423. doi: 10.7498/aps.39.1418
    [19] 赵庆兰, 黄依森. 邻苯二甲酸氢钾(KAP)单晶中包裹物的X射线衍射形貌衬度. 物理学报, 1989, 38(7): 1134-1139. doi: 10.7498/aps.38.1134
    [20] 梁敬魁, 易孙圣. α-LiIO3单晶体在静电场作用下X射线双晶衍射的研究. 物理学报, 1978, 27(2): 126-136. doi: 10.7498/aps.27.126
计量
  • 文章访问数:  4858
  • PDF下载量:  244
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-14
  • 修回日期:  2017-04-24
  • 刊出日期:  2017-07-05

/

返回文章
返回