搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属衬底上高质量大面积石墨烯的插层及其机制

郭辉 路红亮 黄立 王雪艳 林晓 王业亮 杜世萱 高鸿钧

金属衬底上高质量大面积石墨烯的插层及其机制

郭辉, 路红亮, 黄立, 王雪艳, 林晓, 王业亮, 杜世萱, 高鸿钧
PDF
导出引用
导出核心图
  • 石墨烯作为一种新型二维材料,因其优异的性质,在科学和应用领域具有非常重要的意义.而其超高的载流子迁移率、室温量子霍尔效应等,使其在信息器件领域备受关注.如何获得高质量并且与当代硅基工艺兼容的石墨烯功能器件,是未来将石墨烯应用于电子学领域的关键.近年来,研究人员发展了一种在外延石墨烯和金属衬底之间实现硅插层的技术,将金属表面外延石墨烯高质量、大面积的特点与当代硅基工艺结合起来,实现了无需转移且无损地将高质量石墨烯置于半导体之上.通过系统的实验研究并结合理论计算,揭示了插层过程包含四个主要阶段:诱导产生缺陷、异质原子插层、石墨烯自我修复和异质原子扩散成膜,并证实了这一插层机制的普适性.拉曼和角分辨光电子能谱实验结果表明,插层后的石墨烯恢复了本征特性,接近自由状态.此外,还实现了多种单质元素的插层.不同种类的原子形成不同的插层结构,从而构成了多种石墨烯/插层异质结.这为调控石墨烯的性质提供了实验基础,也展现了该插层技术的普适性.
      通信作者: 杜世萱, sxdu@iphy.ac.cn;hjgao@iphy.ac.cn ; 高鸿钧, sxdu@iphy.ac.cn;hjgao@iphy.ac.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFA0202300)、国家重点基础研究发展计划(批准号:2013CBA01600)、国家自然科学基金(批准号:61390501,61471337,51325204,61622116,61504149,11604373)、中国科学院和中国科学院大学青年教师启动基金资助的课题.
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [2]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379

    [3]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [4]

    Beenakker C W J 2006 Phys. Rev. Lett. 97 067007

    [5]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [6]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [7]

    Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312

    [8]

    Bae S, Kim H, Lee Y, Xu X F, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574

    [9]

    Gao L B, Ren W C, Xu H L, Jin L, Wang Z X, Ma T, Ma L P, Zhang Z Y, Fu Q, Peng L M, Bao X H, Cheng H M 2012 Nat. Commun. 3 699

    [10]

    Yan Z, Peng Z W, Sun Z Z, Yao J, Zhu Y, Liu Z, Ajayan P M, Tour J M 2011 Acs Nano 5 8187

    [11]

    Xu S C, Man B Y, Jiang S Z, Chen C S, Yang C, Liu M, Gao X G, Sun Z C, Zhang C 2013 Cryst. Eng. Comm. 15 1840

    [12]

    Chen J Y, Guo Y L, Wen Y G, Huang L P, Xue Y Z, Geng D C, Wu B, Luo B R, Yu G, Liu Y Q 2013 Adv. Mater. 25 992

    [13]

    Lee J H, Lee E K, Joo W J, Jang Y, Kim B S, Lim J Y, Choi S H, Ahn S J, Ahn J R, Park M H, Yang C W, Choi B L, Hwang S W, Whang D 2014 Science 344 286

    [14]

    Chen Y B, Sun J Y, Gao J F, Du F, Han Q, Nie Y F, Chen Z, Bachmatiuk A, Priydarshi M K, Ma D L, Song X J, Wu X S, Xiong C Y, Rummeli M H, Ding F, Zhang Y F, Liu Z F 2015 Adv. Mater. 27 7839

    [15]

    Tang S J, Wang H M, Wang H S, Sun Q J, Zhang X Y, Cong C X, Xie H, Liu X Y, Zhou X H, Huang F Q, Chen X S, Yu T, Ding F, Xie X M, Jiang M H 2015 Nat. Commun. 6 6499

    [16]

    Suk J W, Lee W H, Lee J, Chou H, Piner R D, Hao Y F, Akinwande D, Ruoff R S 2013 Nano Lett. 13 1462

    [17]

    Pirkle A, Chan J, Venugopal A, Hinojos D, Magnuson C W, McDonnell S, Colombo L, Vogel E M, Ruoff R S, Wallace R M 2011 Appl. Phys. Lett. 99 122108

    [18]

    Pan Y, Shi D X, Gao H J 2007 Chin. Phys. 16 3151

    [19]

    Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F, Gao H J 2009 Adv. Mater. 21 2777

    [20]

    Sutter P W, Flege J I, Sutter E A 2008 Nat. Mater. 7 406

    [21]

    Meng L, Wu R T, Zhang L Z, Li L F, Du S X, Wang Y L, Gao H J 2012 J. Phys.: Condens. Matter 24 314214

    [22]

    N'Diaye A T, Coraux J, Plasa T N, Busse C, Michely T 2008 New J. Phys. 10 043033

    [23]

    Usachov D, Dobrotvorskii A M, Varykhalov A, Rader O, Gudat W, Shikin A M, Adamchuk V K 2008 Phys. Rev. B 78 085403

    [24]

    Odahara G, Otani S, Oshima C, Suzuki M, Yasue T, Koshikawa T 2011 Surf. Sci. 605 1095

    [25]

    Preobrajenski A B, Ng M L, Vinogradov A S, Martensson N 2008 Phys. Rev. B 78 073401

    [26]

    Starodub E, Bostwick A, Moreschini L, Nie S, El Gabaly F, McCarty K F, Rotenberg E 2011 Phys. Rev. B 83 125428

    [27]

    Que Y D, Zhang Y, Wang Y L, Huang L, Xu W Y, Tao J, Wu L J, Zhu Y M, Kim K, Weinl M, Schreck M, Shen C M, Du S X, Liu Y Q, Gao H J 2015 Adv. Mater. Interfaces 2 1400543

    [28]

    Meng L, Wu R T, Zhou H T, Li G, Zhang Y, Li L F, Wang Y L, Gao H J 2012 Appl. Phys. Lett. 100 083101

    [29]

    Mao J H, Huang L, Pan Y, Gao M, He J F, Zhou H T, Guo H M, Tian Y, Zou Q, Zhang L Z, Zhang H G, Wang Y L, Du S X, Zhou X J, Neto A H C, Gao H J 2012 Appl. Phys. Lett. 100 093101

    [30]

    Huang L, Zhang Y F, Zhang Y Y, Xu W Y, Que Y D, Li E, Pan J B, Wang Y L, Liu Y Q, Du S X, Pantelides S T, Gao H J 2017 Nano Lett. 17 1161

    [31]

    Cai Y, Chuu C P, Wei C M, Chou M Y 2013 Phys. Rev. B 88 245408

    [32]

    Cinquanta E, Scalise E, Chiappe D, Grazianetti C, van den Broek B, Houssa M, Fanciulli M, Molle A 2013 J. Phys. Chem. C 117 16719

    [33]

    Sutter P, Hybertsen M S, Sadowski J T, Sutter E 2009 Nano Lett. 9 2654

    [34]

    Vanderveen J F, Himpsel F J, Eastman D E 1980 Phys. Rev. B 22 4226

    [35]

    Casiraghi C, Pisana S, Novoselov K S, Geim A K, Ferrari A C 2007 Appl. Phys. Lett. 91 233108

    [36]

    Ferralis N, Maboudian R, Carraro C 2008 Phys. Rev. Lett. 101 156801

    [37]

    Das A, Pisana S, Chakraborty B, Piscanec S, Saha S K, Waghmare U V, Novoselov K S, Krishnamurthy H R, Geim A K, Ferrari A C, Sood A K 2008 Nat. Nanotechnol. 3 210

    [38]

    Mohiuddin T M G, Lombardo A, Nair R R, Bonetti A, Savini G, Jalil R, Bonini N, Basko D M, Galiotis C, Marzari N, Novoselov K S, Geim A K, Ferrari A C 2009 Phys. Rev. B 79 205433

    [39]

    Li L, Wang Y, Meng L, Wu R, Gao H J 2013 Appl. Phys. Lett. 102 093106

    [40]

    Robertson J 2006 Rep. Prog. Phys. 69 327

    [41]

    Li L F, Wang Y L, Xie S Y, Li X B, Wang Y Q, Wu R T, Sun H B, Zhang S B, Gao H J 2013 Nano Lett. 13 4671

    [42]

    Beenakker C W J 2008 Rev. Mod. Phys. 80 1337

    [43]

    Heersche H B, Jarillo-Herrero P, Oostinga J B, Vandersypen L M K, Morpurgo A F 2007 Nature 446 56

    [44]

    Jin L, Fu Q, Mu R T, Tan D L, Bao X H 2011 Phys. Chem. Chem. Phys. 13 16655

    [45]

    Fei X M, Zhang L Z, Xiao W D, Chen H, Que Y D, Liu L W, Yang K, Du S X, Gao H J 2015 J. Phys. Chem. C 119 9839

    [46]

    Schumacher S, Huttmann F, Petrović M, Witt C, Frster D F, Vo-van C, Coraux J, Martnez-Galera A J, Sessi V, Vergara I, Rckamp R, Grninger M, Schleheck N, Meyer zu Heringdorf F, Ohresser P, Kralj M, Wehling T O, Michely T 2014 Phys. Rev. B 90 235437

    [47]

    Huang L, Pan Y, Pan L D, Gao M, Xu W Y, Que Y D, Zhou H T, Wang Y L, Du S X, Gao H J 2011 Appl. Phys. Lett. 99 163107

    [48]

    Girit C O, Meyer J C, Erni R, Rossell M D, Kisielowski C, Yang L, Park C H, Crommie M F, Cohen M L, Louie S G, Zettl A 2009 Science 323 1705

    [49]

    Sutter P, Sadowski J T, Sutter E A 2010 J. Am. Chem. Soc. 132 8175

    [50]

    Xia C, Watcharinyanon S, Zakharov A A, Yakimova R, Hultman L, Johansson L I, Virojanadara C 2012 Phys. Rev. B 85 045418

    [51]

    Cui Y, Gao J F, Jin L, Zhao J J, Tan D L, Fu Q, Bao X H 2012 Nano Res. 5 352

    [52]

    Li G, Zhou H T, Pan L D, Zhang Y, Huang L, Xu W Y, Du S X, Ouyang M, Ferrari A C, Gao H J 2015 J. Am. Chem. Soc. 137 7099

    [53]

    Cui Y, Fu Q, Bao X H 2010 Phys. Chem. Chem. Phys. 12 5053

    [54]

    Schumacher S, Forster D F, Rosner M, Wehling T O, Michely T 2013 Phys. Rev. Lett. 110 086111

    [55]

    dos Santos J M B L, Peres N M R, Castro A H 2007 Phys. Rev. Lett. 99 256802

    [56]

    Kim N, Kim K S, Jung N, Brus L, Kim P 2011 Nano Lett. 11 860

    [57]

    Que Y D, Xiao W D, Fei X M, Chen H, Huang L, Du S X, Gao H J 2014 Appl. Phys. Lett. 104 093110

    [58]

    Meyer J C, Kisielowski C, Erni R, Rossell M D, Crommie M F, Zettl A 2008 Nano Lett. 8 3582

    [59]

    Wang B, Bocquet M L, Marchini S, Gunther S, Wintterlin J 2008 Phys. Chem. Chem. Phys. 10 3530

    [60]

    Martoccia D, Willmott P R, Brugger T, Bjorck M, Gunther S, Schleputz C M, Cervellino A, Pauli S A, Patterson B D, Marchini S, Wintterlin J, Moritz W, Greber T 2008 Phys. Rev. Lett. 101 126102

    [61]

    Peng X Y, Ahuja R 2010 Phys. Rev. B 82 045425

    [62]

    Zhang H, Fu Q, Cui Y, Tan D L, Bao X H 2009 J. Phys. Chem. C 113 8296

    [63]

    Du Y, Zhuang J, Wang J, Li Z, Liu H, Zhao J, Xu X, Feng H, Chen L, Wu K, Wang X, Dou S X 2016 Sci. Adv. 2 e1600067

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [2]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379

    [3]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [4]

    Beenakker C W J 2006 Phys. Rev. Lett. 97 067007

    [5]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [6]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [7]

    Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312

    [8]

    Bae S, Kim H, Lee Y, Xu X F, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574

    [9]

    Gao L B, Ren W C, Xu H L, Jin L, Wang Z X, Ma T, Ma L P, Zhang Z Y, Fu Q, Peng L M, Bao X H, Cheng H M 2012 Nat. Commun. 3 699

    [10]

    Yan Z, Peng Z W, Sun Z Z, Yao J, Zhu Y, Liu Z, Ajayan P M, Tour J M 2011 Acs Nano 5 8187

    [11]

    Xu S C, Man B Y, Jiang S Z, Chen C S, Yang C, Liu M, Gao X G, Sun Z C, Zhang C 2013 Cryst. Eng. Comm. 15 1840

    [12]

    Chen J Y, Guo Y L, Wen Y G, Huang L P, Xue Y Z, Geng D C, Wu B, Luo B R, Yu G, Liu Y Q 2013 Adv. Mater. 25 992

    [13]

    Lee J H, Lee E K, Joo W J, Jang Y, Kim B S, Lim J Y, Choi S H, Ahn S J, Ahn J R, Park M H, Yang C W, Choi B L, Hwang S W, Whang D 2014 Science 344 286

    [14]

    Chen Y B, Sun J Y, Gao J F, Du F, Han Q, Nie Y F, Chen Z, Bachmatiuk A, Priydarshi M K, Ma D L, Song X J, Wu X S, Xiong C Y, Rummeli M H, Ding F, Zhang Y F, Liu Z F 2015 Adv. Mater. 27 7839

    [15]

    Tang S J, Wang H M, Wang H S, Sun Q J, Zhang X Y, Cong C X, Xie H, Liu X Y, Zhou X H, Huang F Q, Chen X S, Yu T, Ding F, Xie X M, Jiang M H 2015 Nat. Commun. 6 6499

    [16]

    Suk J W, Lee W H, Lee J, Chou H, Piner R D, Hao Y F, Akinwande D, Ruoff R S 2013 Nano Lett. 13 1462

    [17]

    Pirkle A, Chan J, Venugopal A, Hinojos D, Magnuson C W, McDonnell S, Colombo L, Vogel E M, Ruoff R S, Wallace R M 2011 Appl. Phys. Lett. 99 122108

    [18]

    Pan Y, Shi D X, Gao H J 2007 Chin. Phys. 16 3151

    [19]

    Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F, Gao H J 2009 Adv. Mater. 21 2777

    [20]

    Sutter P W, Flege J I, Sutter E A 2008 Nat. Mater. 7 406

    [21]

    Meng L, Wu R T, Zhang L Z, Li L F, Du S X, Wang Y L, Gao H J 2012 J. Phys.: Condens. Matter 24 314214

    [22]

    N'Diaye A T, Coraux J, Plasa T N, Busse C, Michely T 2008 New J. Phys. 10 043033

    [23]

    Usachov D, Dobrotvorskii A M, Varykhalov A, Rader O, Gudat W, Shikin A M, Adamchuk V K 2008 Phys. Rev. B 78 085403

    [24]

    Odahara G, Otani S, Oshima C, Suzuki M, Yasue T, Koshikawa T 2011 Surf. Sci. 605 1095

    [25]

    Preobrajenski A B, Ng M L, Vinogradov A S, Martensson N 2008 Phys. Rev. B 78 073401

    [26]

    Starodub E, Bostwick A, Moreschini L, Nie S, El Gabaly F, McCarty K F, Rotenberg E 2011 Phys. Rev. B 83 125428

    [27]

    Que Y D, Zhang Y, Wang Y L, Huang L, Xu W Y, Tao J, Wu L J, Zhu Y M, Kim K, Weinl M, Schreck M, Shen C M, Du S X, Liu Y Q, Gao H J 2015 Adv. Mater. Interfaces 2 1400543

    [28]

    Meng L, Wu R T, Zhou H T, Li G, Zhang Y, Li L F, Wang Y L, Gao H J 2012 Appl. Phys. Lett. 100 083101

    [29]

    Mao J H, Huang L, Pan Y, Gao M, He J F, Zhou H T, Guo H M, Tian Y, Zou Q, Zhang L Z, Zhang H G, Wang Y L, Du S X, Zhou X J, Neto A H C, Gao H J 2012 Appl. Phys. Lett. 100 093101

    [30]

    Huang L, Zhang Y F, Zhang Y Y, Xu W Y, Que Y D, Li E, Pan J B, Wang Y L, Liu Y Q, Du S X, Pantelides S T, Gao H J 2017 Nano Lett. 17 1161

    [31]

    Cai Y, Chuu C P, Wei C M, Chou M Y 2013 Phys. Rev. B 88 245408

    [32]

    Cinquanta E, Scalise E, Chiappe D, Grazianetti C, van den Broek B, Houssa M, Fanciulli M, Molle A 2013 J. Phys. Chem. C 117 16719

    [33]

    Sutter P, Hybertsen M S, Sadowski J T, Sutter E 2009 Nano Lett. 9 2654

    [34]

    Vanderveen J F, Himpsel F J, Eastman D E 1980 Phys. Rev. B 22 4226

    [35]

    Casiraghi C, Pisana S, Novoselov K S, Geim A K, Ferrari A C 2007 Appl. Phys. Lett. 91 233108

    [36]

    Ferralis N, Maboudian R, Carraro C 2008 Phys. Rev. Lett. 101 156801

    [37]

    Das A, Pisana S, Chakraborty B, Piscanec S, Saha S K, Waghmare U V, Novoselov K S, Krishnamurthy H R, Geim A K, Ferrari A C, Sood A K 2008 Nat. Nanotechnol. 3 210

    [38]

    Mohiuddin T M G, Lombardo A, Nair R R, Bonetti A, Savini G, Jalil R, Bonini N, Basko D M, Galiotis C, Marzari N, Novoselov K S, Geim A K, Ferrari A C 2009 Phys. Rev. B 79 205433

    [39]

    Li L, Wang Y, Meng L, Wu R, Gao H J 2013 Appl. Phys. Lett. 102 093106

    [40]

    Robertson J 2006 Rep. Prog. Phys. 69 327

    [41]

    Li L F, Wang Y L, Xie S Y, Li X B, Wang Y Q, Wu R T, Sun H B, Zhang S B, Gao H J 2013 Nano Lett. 13 4671

    [42]

    Beenakker C W J 2008 Rev. Mod. Phys. 80 1337

    [43]

    Heersche H B, Jarillo-Herrero P, Oostinga J B, Vandersypen L M K, Morpurgo A F 2007 Nature 446 56

    [44]

    Jin L, Fu Q, Mu R T, Tan D L, Bao X H 2011 Phys. Chem. Chem. Phys. 13 16655

    [45]

    Fei X M, Zhang L Z, Xiao W D, Chen H, Que Y D, Liu L W, Yang K, Du S X, Gao H J 2015 J. Phys. Chem. C 119 9839

    [46]

    Schumacher S, Huttmann F, Petrović M, Witt C, Frster D F, Vo-van C, Coraux J, Martnez-Galera A J, Sessi V, Vergara I, Rckamp R, Grninger M, Schleheck N, Meyer zu Heringdorf F, Ohresser P, Kralj M, Wehling T O, Michely T 2014 Phys. Rev. B 90 235437

    [47]

    Huang L, Pan Y, Pan L D, Gao M, Xu W Y, Que Y D, Zhou H T, Wang Y L, Du S X, Gao H J 2011 Appl. Phys. Lett. 99 163107

    [48]

    Girit C O, Meyer J C, Erni R, Rossell M D, Kisielowski C, Yang L, Park C H, Crommie M F, Cohen M L, Louie S G, Zettl A 2009 Science 323 1705

    [49]

    Sutter P, Sadowski J T, Sutter E A 2010 J. Am. Chem. Soc. 132 8175

    [50]

    Xia C, Watcharinyanon S, Zakharov A A, Yakimova R, Hultman L, Johansson L I, Virojanadara C 2012 Phys. Rev. B 85 045418

    [51]

    Cui Y, Gao J F, Jin L, Zhao J J, Tan D L, Fu Q, Bao X H 2012 Nano Res. 5 352

    [52]

    Li G, Zhou H T, Pan L D, Zhang Y, Huang L, Xu W Y, Du S X, Ouyang M, Ferrari A C, Gao H J 2015 J. Am. Chem. Soc. 137 7099

    [53]

    Cui Y, Fu Q, Bao X H 2010 Phys. Chem. Chem. Phys. 12 5053

    [54]

    Schumacher S, Forster D F, Rosner M, Wehling T O, Michely T 2013 Phys. Rev. Lett. 110 086111

    [55]

    dos Santos J M B L, Peres N M R, Castro A H 2007 Phys. Rev. Lett. 99 256802

    [56]

    Kim N, Kim K S, Jung N, Brus L, Kim P 2011 Nano Lett. 11 860

    [57]

    Que Y D, Xiao W D, Fei X M, Chen H, Huang L, Du S X, Gao H J 2014 Appl. Phys. Lett. 104 093110

    [58]

    Meyer J C, Kisielowski C, Erni R, Rossell M D, Crommie M F, Zettl A 2008 Nano Lett. 8 3582

    [59]

    Wang B, Bocquet M L, Marchini S, Gunther S, Wintterlin J 2008 Phys. Chem. Chem. Phys. 10 3530

    [60]

    Martoccia D, Willmott P R, Brugger T, Bjorck M, Gunther S, Schleputz C M, Cervellino A, Pauli S A, Patterson B D, Marchini S, Wintterlin J, Moritz W, Greber T 2008 Phys. Rev. Lett. 101 126102

    [61]

    Peng X Y, Ahuja R 2010 Phys. Rev. B 82 045425

    [62]

    Zhang H, Fu Q, Cui Y, Tan D L, Bao X H 2009 J. Phys. Chem. C 113 8296

    [63]

    Du Y, Zhuang J, Wang J, Li Z, Liu H, Zhao J, Xu X, Feng H, Chen L, Wu K, Wang X, Dou S X 2016 Sci. Adv. 2 e1600067

  • [1] 陈永军, 赵汝光, 杨威生. 长链烷烃和醇在石墨表面吸附的扫描隧道显微镜研究. 物理学报, 2005, 54(1): 284-290. doi: 10.7498/aps.54.284
    [2] 刘梦溪, 张艳锋, 刘忠范. 石墨烯-六方氮化硼面内异质结构的扫描隧道显微学研究. 物理学报, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [3] 黄向前, 林陈昉, 尹秀丽, 赵汝光, 王恩哥, 胡宗海. 一维石墨烯超晶格上的氢吸附. 物理学报, 2014, 63(19): 197301. doi: 10.7498/aps.63.197301
    [4] 张永平, 闫隆, 解思深, 庞世谨, 高鸿钧. Si(111)-(7×7)表面上Ge量子点的自组织生长. 物理学报, 2002, 51(2): 296-299. doi: 10.7498/aps.51.296
    [5] 王 祺, 赵华波, 张朝晖. 高定向热解石墨表面局域导电增强现象的扫描探针显微学研究. 物理学报, 2008, 57(5): 3059-3063. doi: 10.7498/aps.57.3059
    [6] 尤思凡, 孙鲁晔, 郭静, 裘晓辉, 江颖. 表/界面水的扫描探针技术研究进展. 物理学报, 2019, 68(1): 016802. doi: 10.7498/aps.68.20182201
    [7] 陈彩云, 刘进行, 张小敏, 李金龙, 任玲玲, 董国材. 扫描电子显微镜法测定金属衬底上石墨烯薄膜的覆盖度. 物理学报, 2018, 67(7): 076802. doi: 10.7498/aps.67.20172654
    [8] 葛四平, 朱 星, 杨威生. 用扫描隧道显微镜操纵Cu亚表面自间隙原子. 物理学报, 2005, 54(2): 824-831. doi: 10.7498/aps.54.824
    [9] 黄仁忠, 刘柳, 杨文静. 扫描隧道显微镜针尖调制的薄膜表面的原子扩散. 物理学报, 2011, 60(11): 116803. doi: 10.7498/aps.60.116803
    [10] 杨景景, 杜文汉. Sr/Si(100)表面TiSi2纳米岛的扫描隧道显微镜研究. 物理学报, 2011, 60(3): 037301. doi: 10.7498/aps.60.037301
  • 引用本文:
    Citation:
计量
  • 文章访问数:  587
  • PDF下载量:  260
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-14
  • 修回日期:  2017-08-31
  • 刊出日期:  2017-11-05

金属衬底上高质量大面积石墨烯的插层及其机制

    基金项目: 

    国家重点研发计划(批准号:2016YFA0202300)、国家重点基础研究发展计划(批准号:2013CBA01600)、国家自然科学基金(批准号:61390501,61471337,51325204,61622116,61504149,11604373)、中国科学院和中国科学院大学青年教师启动基金资助的课题.

摘要: 石墨烯作为一种新型二维材料,因其优异的性质,在科学和应用领域具有非常重要的意义.而其超高的载流子迁移率、室温量子霍尔效应等,使其在信息器件领域备受关注.如何获得高质量并且与当代硅基工艺兼容的石墨烯功能器件,是未来将石墨烯应用于电子学领域的关键.近年来,研究人员发展了一种在外延石墨烯和金属衬底之间实现硅插层的技术,将金属表面外延石墨烯高质量、大面积的特点与当代硅基工艺结合起来,实现了无需转移且无损地将高质量石墨烯置于半导体之上.通过系统的实验研究并结合理论计算,揭示了插层过程包含四个主要阶段:诱导产生缺陷、异质原子插层、石墨烯自我修复和异质原子扩散成膜,并证实了这一插层机制的普适性.拉曼和角分辨光电子能谱实验结果表明,插层后的石墨烯恢复了本征特性,接近自由状态.此外,还实现了多种单质元素的插层.不同种类的原子形成不同的插层结构,从而构成了多种石墨烯/插层异质结.这为调控石墨烯的性质提供了实验基础,也展现了该插层技术的普适性.

English Abstract

参考文献 (63)

目录

    /

    返回文章
    返回