搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间盘绕型声学超材料的亚波长拓扑谷自旋态

郑圣洁 夏百战 刘亭亭 于德介

引用本文:
Citation:

空间盘绕型声学超材料的亚波长拓扑谷自旋态

郑圣洁, 夏百战, 刘亭亭, 于德介

Subwavelength topological valley-spin states in the space-coiling acoustic metamaterials

Zheng Sheng-Jie, Xia Bai-Zhan, Liu Ting-Ting, Yu De-Jie
PDF
导出引用
  • 声子晶体的Dirac线性色散关系,使其具有奇特的声拓扑特性,在声波控制领域具有良好的应用前景.目前,声子晶体的拓扑边缘态主要基于Bragg散射所产生的能带结构,难以实现低频声波的受拓扑保护单向边缘传输.本文引入空间盘绕结构,设计了具有C3v对称性的空间盘绕型声学超材料,并研究其布里渊区高对称点(K/K'点)的亚波长Dirac锥形线性色散.接着,通过旋转打破空间盘绕型声学超材料的镜像对称性,使其Dirac简并锥裂开而产生亚波长拓扑相变和亚波长拓扑谷自旋态.最后,采用拓扑相位互逆的声学超材料构造拓扑界面,实现声拓扑谷自旋传输.空间盘绕型声学超材料的亚波长Dirac线性色散与亚波长拓扑谷自旋态突破了声子拓扑绝缘体的几何尺寸限制,为声拓扑稳健传输在低频段的应用提供理论基础.
    Phononic crystals possess Dirac linear dispersion bands. In the vicinity of Dirac cones, phononic crystals exhibit topological properties which have good application prospects in control of acoustic waves. Up to now, the topological edge states of phononic crystals, based on the band structures arising from the Bragg scattering, cannot realize low-frequency sound waves by the topologically protected one-way edge transmission. In this paper, by introducing the space-coiling structure, a space-coiling phononic metamaterial with C3v symmetry is designed. At the K (K') points of the Brillouin zone, the bands linearly cross to a subwavelength Dirac degenerated cones. With a rotation of the acoustic metamaterials, the mirror symmetry will be broken and the Dirac degenerated cones will be reopened, leading to subwavelength topological phase transition and subwavelength topological valley-spin states. Lastly, along the topological interface between acoustic metamaterials with different topological valley-spin states, we successfully observe the phononic topologically valley-spin transmission. The subwavelength Dirac conical dispersion and the subwavelength topological valley-spin state breakthrough the limitation of the geometric dimension of the phononic topological insulator, and provide a theoretical basis for the application of the phononic topologically robust transmission in a subwavelength scale.
      通信作者: 夏百战, xiabz2013@hnu.edu.cn
      Corresponding author: Xia Bai-Zhan, xiabz2013@hnu.edu.cn
    [1]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [2]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757

    [3]

    Lu L, Joannopoulos J D, Soljaclc M 2014 Nat. Photon. 8 821

    [4]

    Wang Z, Chong Y D, Joannopoulos J D, Soljacic M 2009 Nature 461 772

    [5]

    Poo Y, Wu R X, Lin Z F, Yang Y, Chan C T 2011 Phys. Rev. Lett. 106 093903

    [6]

    Fang K J, Yu Z F, Fan S H 2012 Nat. Photon. 6 782

    [7]

    Hafezi M, Mittal S, Fan J, Migdall A, Taylor J M 2013 Nat. Photon. 7 1001

    [8]

    Khanikaev A B, Mousavi S H, Tse W K, Kargarian M, MacDonald A H, Shvets G 2013 Nat. Mater. 12 233

    [9]

    Wu L H, Hu X 2015 Phys. Rev. Lett. 114 223901

    [10]

    Fang K J, Fan S H 2013 Phys. Rev. Lett. 111 203901

    [11]

    Bandres M A, Rechtsman M C, Segev M 2016 Phys. Rev. X 6 011016

    [12]

    Cheng X, Jouvaud C, Ni X, Mousavi S H, Genack A Z, Khanikaev A B 2016 Nat. Mater. 15 542

    [13]

    Ma T, Khanikaev A B, Mousavi S H, Shvets G 2015 Phys. Rev. Lett. 114 127401

    [14]

    Wolfe J P 2005 Imaging Phonons: Acoustic Wave Propagation in Solids (New York: Cambridge University Press)

    [15]

    Johnson S G,Povinelli M L, Soljacic M, Karalis A, Jacobs S, Joannopoulos J D 2005 Appl. Phys. B: Lasers O. 81 283

    [16]

    Ssstrunk R, Huber S D 2016 Proc. Natl. Acad. Sci. USA 113 E4767

    [17]

    Nash L M, Kleckner D, Read A, Vitelli V, Turner A M, Irvine W T M 2015 Proc. Natl. Acad. Sci. USA 112 14495

    [18]

    Ong Z Y, Lee C H 2016 Phys. Rev. B 94 134203

    [19]

    Fleury R, Sounas D L, Sieck C F, Haberman M R, Alù A 2014 Science 343 516

    [20]

    Yang Z, Gao F, Shi X H, Lin X, Gao Z, Chong Y D, Zhang B 2015 Phys. Rev. Lett. 114 114301

    [21]

    Peng Y G, Qin C Z, Zhao D G, Shen Y X, Xu X Y, Bao M, Jia H, Zhu X F 2016 Nat. Commum. 7 13368

    [22]

    Chen Z G, Wu Y 2016 Phys. Rev. Appl. 5 054021

    [23]

    He C, Li Z, Ni X, Sun X C, Yu S Y, Lu M H, Liu X P, Chen Y F 2016 Appl. Phys. Lett. 108 031904

    [24]

    Fleury R, Khanikaev A B, Alù A 2016 Nat. Commun. 7 11744

    [25]

    Wei Q, Tian Y, Zuo S Y, Cheng Y, Liu X J 2017 Phys. Rev. B 95 094305

    [26]

    Lu J Y, Qiu C Y, Xu S J, Ye Y T, Ke M Z, Liu Z Y 2014 Phys. Rev. B 89 134302

    [27]

    Chen Z G, Ni X, Wu Y, He C, Sun X C, Zheng L Y, Lu M H, Chen Y F 2014 Sci. Rep. 4 4613

    [28]

    Li Y, Wu Y, Mei J 2014 Appl. Phys. Lett. 105 014107

    [29]

    Dai H Q, Liu T T, Jiao J R, Xia B Z, Yu D J 2017 J. Appl. Phys. 121 135105

    [30]

    Xiao M, Ma G C, Yang Z Y, Sheng P, Zhang Z Q, Chan C T 2015 Nat. Phys. 11 240

    [31]

    He C, Ni X, Ge H, Sun X C, Chen Y B, Lu M H, Liu X P, Chen Y F 2016 Nat. Phys. 12 1124

    [32]

    Lu J Y, Qiu C Y, Ye L P, Fan X Y, Ke M Z, Zhang F, Liu Z Y 2017 Nat. Phys. 13 369

    [33]

    Lu J Y, Qiu C Y, Ke M Z, Liu Z Y 2016 Phys. Rev. Lett. 116 093901

    [34]

    Ye L P, Qiu C Y, Lu J Y, Wen X H, Shen Y Y, Ke M Z, Zhang F, Liu Z Y 2017 Phys. Rev. B 95 174106

    [35]

    Zhang Z W, Wei Q, Cheng Y, Zhang T, Wu D J, Liu X J 2017 Phys. Rev. Lett. 118 084303

    [36]

    Xia B Z, Liu T T, Huang G L, Dai H Q, Jiao J R, Zang X G, Yu D J, Zheng S J, Liu J 2017 Phys. Rev. B 96 094106

    [37]

    Mei J, Chen Z G, Wu Y 2016 Sci. Rep. 6 32752

    [38]

    Skirlo S A, Lu L, Soljacic M 2014 Phys. Rev. Lett. 113 113904

    [39]

    He W Y, Chan C T 2015 Sci. Rep. 5 8186

    [40]

    Xia B Z, Zheng S J, Chen N, Liu T T, Jiao J R, Dai H Q, Yu D J, Liu J 2017 arXiv preprint arXiv:1706.08206

    [41]

    Simon Y, Fleury R, Lemoult F, Fink M, Lerosey G 2017 New J. Phys. 19 075003

    [42]

    Xia B Z, Li L P, Liu J, Yu D J 2017 J. Vib. Acoust. 140 011011

    [43]

    Liu J, Li L P, Xia B Z, Man X F 2017 Int. J. Solids. Struct. (Accept)

  • [1]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [2]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757

    [3]

    Lu L, Joannopoulos J D, Soljaclc M 2014 Nat. Photon. 8 821

    [4]

    Wang Z, Chong Y D, Joannopoulos J D, Soljacic M 2009 Nature 461 772

    [5]

    Poo Y, Wu R X, Lin Z F, Yang Y, Chan C T 2011 Phys. Rev. Lett. 106 093903

    [6]

    Fang K J, Yu Z F, Fan S H 2012 Nat. Photon. 6 782

    [7]

    Hafezi M, Mittal S, Fan J, Migdall A, Taylor J M 2013 Nat. Photon. 7 1001

    [8]

    Khanikaev A B, Mousavi S H, Tse W K, Kargarian M, MacDonald A H, Shvets G 2013 Nat. Mater. 12 233

    [9]

    Wu L H, Hu X 2015 Phys. Rev. Lett. 114 223901

    [10]

    Fang K J, Fan S H 2013 Phys. Rev. Lett. 111 203901

    [11]

    Bandres M A, Rechtsman M C, Segev M 2016 Phys. Rev. X 6 011016

    [12]

    Cheng X, Jouvaud C, Ni X, Mousavi S H, Genack A Z, Khanikaev A B 2016 Nat. Mater. 15 542

    [13]

    Ma T, Khanikaev A B, Mousavi S H, Shvets G 2015 Phys. Rev. Lett. 114 127401

    [14]

    Wolfe J P 2005 Imaging Phonons: Acoustic Wave Propagation in Solids (New York: Cambridge University Press)

    [15]

    Johnson S G,Povinelli M L, Soljacic M, Karalis A, Jacobs S, Joannopoulos J D 2005 Appl. Phys. B: Lasers O. 81 283

    [16]

    Ssstrunk R, Huber S D 2016 Proc. Natl. Acad. Sci. USA 113 E4767

    [17]

    Nash L M, Kleckner D, Read A, Vitelli V, Turner A M, Irvine W T M 2015 Proc. Natl. Acad. Sci. USA 112 14495

    [18]

    Ong Z Y, Lee C H 2016 Phys. Rev. B 94 134203

    [19]

    Fleury R, Sounas D L, Sieck C F, Haberman M R, Alù A 2014 Science 343 516

    [20]

    Yang Z, Gao F, Shi X H, Lin X, Gao Z, Chong Y D, Zhang B 2015 Phys. Rev. Lett. 114 114301

    [21]

    Peng Y G, Qin C Z, Zhao D G, Shen Y X, Xu X Y, Bao M, Jia H, Zhu X F 2016 Nat. Commum. 7 13368

    [22]

    Chen Z G, Wu Y 2016 Phys. Rev. Appl. 5 054021

    [23]

    He C, Li Z, Ni X, Sun X C, Yu S Y, Lu M H, Liu X P, Chen Y F 2016 Appl. Phys. Lett. 108 031904

    [24]

    Fleury R, Khanikaev A B, Alù A 2016 Nat. Commun. 7 11744

    [25]

    Wei Q, Tian Y, Zuo S Y, Cheng Y, Liu X J 2017 Phys. Rev. B 95 094305

    [26]

    Lu J Y, Qiu C Y, Xu S J, Ye Y T, Ke M Z, Liu Z Y 2014 Phys. Rev. B 89 134302

    [27]

    Chen Z G, Ni X, Wu Y, He C, Sun X C, Zheng L Y, Lu M H, Chen Y F 2014 Sci. Rep. 4 4613

    [28]

    Li Y, Wu Y, Mei J 2014 Appl. Phys. Lett. 105 014107

    [29]

    Dai H Q, Liu T T, Jiao J R, Xia B Z, Yu D J 2017 J. Appl. Phys. 121 135105

    [30]

    Xiao M, Ma G C, Yang Z Y, Sheng P, Zhang Z Q, Chan C T 2015 Nat. Phys. 11 240

    [31]

    He C, Ni X, Ge H, Sun X C, Chen Y B, Lu M H, Liu X P, Chen Y F 2016 Nat. Phys. 12 1124

    [32]

    Lu J Y, Qiu C Y, Ye L P, Fan X Y, Ke M Z, Zhang F, Liu Z Y 2017 Nat. Phys. 13 369

    [33]

    Lu J Y, Qiu C Y, Ke M Z, Liu Z Y 2016 Phys. Rev. Lett. 116 093901

    [34]

    Ye L P, Qiu C Y, Lu J Y, Wen X H, Shen Y Y, Ke M Z, Zhang F, Liu Z Y 2017 Phys. Rev. B 95 174106

    [35]

    Zhang Z W, Wei Q, Cheng Y, Zhang T, Wu D J, Liu X J 2017 Phys. Rev. Lett. 118 084303

    [36]

    Xia B Z, Liu T T, Huang G L, Dai H Q, Jiao J R, Zang X G, Yu D J, Zheng S J, Liu J 2017 Phys. Rev. B 96 094106

    [37]

    Mei J, Chen Z G, Wu Y 2016 Sci. Rep. 6 32752

    [38]

    Skirlo S A, Lu L, Soljacic M 2014 Phys. Rev. Lett. 113 113904

    [39]

    He W Y, Chan C T 2015 Sci. Rep. 5 8186

    [40]

    Xia B Z, Zheng S J, Chen N, Liu T T, Jiao J R, Dai H Q, Yu D J, Liu J 2017 arXiv preprint arXiv:1706.08206

    [41]

    Simon Y, Fleury R, Lemoult F, Fink M, Lerosey G 2017 New J. Phys. 19 075003

    [42]

    Xia B Z, Li L P, Liu J, Yu D J 2017 J. Vib. Acoust. 140 011011

    [43]

    Liu J, Li L P, Xia B Z, Man X F 2017 Int. J. Solids. Struct. (Accept)

  • [1] 江龙兴, 李庆超, 张旭, 李京峰, 张静, 陈祖信, 曾敏, 吴昊. 基于拓扑/二维量子材料的自旋电子器件. 物理学报, 2024, 73(1): 017505. doi: 10.7498/aps.73.20231166
    [2] 刘力硕, 陈伟. 自旋简并节线半金属中表面态诱导的自旋相关散射. 物理学报, 2023, 72(17): 177202. doi: 10.7498/aps.72.20230811
    [3] 李荫铭, 孔鹏, 毕仁贵, 何兆剑, 邓科. 双表面周期性弹性声子晶体板中的谷拓扑态. 物理学报, 2022, 71(24): 244302. doi: 10.7498/aps.71.20221292
    [4] 胡军容, 孔鹏, 毕仁贵, 邓科, 赵鹤平. 声学蜂窝结构中的拓扑角态. 物理学报, 2022, 71(5): 054301. doi: 10.7498/aps.71.20211848
    [5] 徐平, 肖钰斐, 黄海漩, 杨拓, 张旭琳, 袁霞, 李雄超, 王梦禹, 徐海东. 简单结构超表面实现波长和偏振态同时复用全息显示新方法. 物理学报, 2021, 70(8): 084201. doi: 10.7498/aps.70.20201047
    [6] 谭丛兵, 钟向丽, 王金斌. 铁电材料中的极性拓扑结构. 物理学报, 2020, 69(12): 127702. doi: 10.7498/aps.69.20200311
    [7] 方云团, 王张鑫, 范尔盼, 李小雪, 王洪金. 基于结构反转二维光子晶体的拓扑相变及拓扑边界态的构建. 物理学报, 2020, 69(18): 184101. doi: 10.7498/aps.69.20200415
    [8] 蔡成欣, 陈韶赓, 王学梅, 梁俊燕, 王兆宏. 各向异性三维非对称双锥五模超材料的能带结构及品质因数. 物理学报, 2020, 69(13): 134302. doi: 10.7498/aps.69.20200364
    [9] 姜聪颖, 孙飞, 冯子力, 刘世炳, 石友国, 赵继民. 三重简并拓扑半金属磷化钼的时间分辨超快动力学. 物理学报, 2020, 69(7): 077801. doi: 10.7498/aps.69.20191816
    [10] 向天, 程亮, 齐静波. 拓扑绝缘体中的超快电荷自旋动力学. 物理学报, 2019, 68(22): 227202. doi: 10.7498/aps.68.20191433
    [11] 秦康, 袁列荣, 谭骏, 彭胜, 王前进, 张学进, 陆延青, 朱永元. 金属亚波长结构的表面增强拉曼散射. 物理学报, 2019, 68(14): 147401. doi: 10.7498/aps.68.20190458
    [12] 丁昌林, 董仪宝, 赵晓鹏. 声学超材料与超表面研究进展. 物理学报, 2018, 67(19): 194301. doi: 10.7498/aps.67.20180963
    [13] 张新成, 廖文虎, 左敏. 非共振圆偏振光作用下单层二硫化钼电子结构及其自旋/谷输运性质. 物理学报, 2018, 67(10): 107101. doi: 10.7498/aps.67.20180213
    [14] 侯海燕, 姚慧, 李志坚, 聂一行. 磁性硅烯超晶格中电场调制的谷极化和自旋极化. 物理学报, 2018, 67(8): 086801. doi: 10.7498/aps.67.20180080
    [15] 赵斌. 球形Dirac方程的空间格点求解及假态问题. 物理学报, 2016, 65(5): 052401. doi: 10.7498/aps.65.052401
    [16] 梁高峰, 赵青, 陈欣, 王长涛, 赵泽宇, 罗先刚. 基于多层膜结构的亚波长光栅研究. 物理学报, 2012, 61(10): 104203. doi: 10.7498/aps.61.104203
    [17] 冯秀琴, 姚治海, 田作林, 韩秀宇. 简并光学参量振荡器的超混沌控制与周期态同步. 物理学报, 2010, 59(12): 8414-8419. doi: 10.7498/aps.59.8414
    [18] 李敏, 张志友, 石莎, 杜惊雷. 亚波长金属聚焦透镜结构参数的优化与分析. 物理学报, 2010, 59(2): 958-963. doi: 10.7498/aps.59.958
    [19] 丁昌林, 赵晓鹏. 可听声频段的声学超材料. 物理学报, 2009, 58(9): 6351-6355. doi: 10.7498/aps.58.6351
    [20] 赵志波, 马如璋. 超空间群理论对“游标卡尺结构”的应用. 物理学报, 1988, 37(12): 1940-1948. doi: 10.7498/aps.37.1940
计量
  • 文章访问数:  6377
  • PDF下载量:  544
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-29
  • 修回日期:  2017-11-06
  • 刊出日期:  2017-11-05

/

返回文章
返回