搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分布损耗加载回旋行波管多模稳态注波互作用理论与比较证实

罗积润 唐彦娜 樊宇 彭澍源 薛谦忠

分布损耗加载回旋行波管多模稳态注波互作用理论与比较证实

罗积润, 唐彦娜, 樊宇, 彭澍源, 薛谦忠
PDF
导出引用
导出核心图
  • 基于目前国际上实验研究的均匀介质加载和周期介质加载结构,建立了一种分布式损耗加载回旋行波管(gyro-TWT)多模稳态注波互作用理论.利用这一理论,以TE01模式基波gyro-TWT注波互作用为例,将Ka和W波段的理论结果与实验和软件仿真进行比较,以证实理论的合理性.
      通信作者: 罗积润, luojirun@mail.ie.ac.cn
    [1]

    Luce T C 2002 IEEE Trans. Plasma Sci. 30 734

    [2]

    Kalaria P C, Kartikeyan M V, Thumm M 2014 IEEE Trans. Plasma Sci. 42 1522

    [3]

    Thumm M 2005 Int. J. Infr. Millim. Waves 26 483

    [4]

    Chu K R 2004 Rev. Mod. Phys. 76 489

    [5]

    Thumm M 2016 State-of-the-Art of High Power gyro-Devices and Free Electron Masers. Update 2015 (KIT Scientific Reports; 7717. Karlsruhe (Germany: Wissenschaftliche Berichte FZKA)

    [6]

    Bratman V, Glyavin M, Idehara T, Kalynov Y, Luchinin Y, Manuilov A, Mitsudo S, Ogawa I, Saito T, Tatematsu Y, Zapevalov V 2009 IEEE Trans. Plasma Sci. 37 36

    [7]

    Flyagin V A, Gaponov A V, Petelin M I, Yulpatov V K 1977 IEEE Trans. Microwave Theory and Techniques. 25 514

    [8]

    Parker R K, Abrams R H, Danly B G, Levush B 2002 IEEE Trans. Microwave Theory and Techniques 50 835

    [9]

    Granatstein V L, Parker R K, Armstrong C M 1999 Proc. IEEE 87 702

    [10]

    Chu K R 2002 IEEE Trans. Plasma Sci. 30 903

    [11]

    Calame J P, Garven M, Danly B G, Levush B, Nguyen K T 2002 IEEE Trans. Electron Dev. 49 1469

    [12]

    Nusinovich G S 1999 IEEE Trans. Plasma Sci. 27 313

    [13]

    Park G S, Choi J J, Park S Y, Armstrong C M, Ganguly A K 1995 Phys. Rev. Lett. 74 2399

    [14]

    Sirigiri J R, Shapiro M A, Temkin R J 2003 Phys. Rev. Lett. 90 258

    [15]

    Thottappan M, Singh S, Jain P K 2016 IEEE Trans. Electron Dev. 63 2118

    [16]

    Denisov G G, Bratman V L, Phelps A, Samsonov S V 1998 IEEE Trans. Plasma Sci. 26 508

    [17]

    Samsonov S V, Gachev I G, Denisov G G, Bogdashov A A, Mishakin S V, Fiks A S, Soluyanova E A, Tai E M, Dominyuk Y V, Levitan B A, Murzin V N 2014 IEEE Trans. Electron Dev. 61 4264

    [18]

    Chu K R, Barnett L R, Chen H Y, Chen S H, Wang C 1995 Phys. Rev. Lett. 74 1103

    [19]

    Chu K R, Chang T H, Barnett L R, Che S H 1999 IEEE Trans. Plasma Sci. 27 391

    [20]

    Yan R, Tang Y, Luo Y 2014 IEEE Trans. Electron Dev. 61 2564

    [21]

    Caplan M, Lin A T, Chu K R 1982 Int. J. Electron. 53 659

    [22]

    Chu K R, Barnett L R, Lau W K, Chang L H, Lin A T, Lin C C 1991 Phys. Fluids B: Plasma Phys 3 2403

    [23]

    Latham P E, Nusinovich G S 1995 Phys. Plasmas 2 3494

    [24]

    Latham P E, Nusinovich G S 1995 Phys. Plasmas 2 3511

    [25]

    Nusinovich G S, Walter M, Zhao J 1998 Phys. Rev.. 58 6594

    [26]

    Peng S, Wang Q, Luo J, Zhang Z 2014 Acta Phys. Sin. 63 207401

    [27]

    Tang Y, Luo J, Xue Q, Fan Y, Wang X, Peng S, Li S 2017 IEEE Trans. Electron Dev. 64 543

    [28]

    Harrington R F 1961 Time Harmonic Electromagnetic Fields (New York: McGraw-Hill)

    [29]

    Pozar D M 1998 Microwave Engineering (New York: Wiley)

    [30]

    Tigelis I G, Vomvoridis J L, Tzima S 1998 IEEE Trans. Plasma. Sci. 26 922

    [31]

    Tang Y, Luo Y, Xu Y, Yan R 2014 J. Infr. Millim. THz Waves 35 799

    [32]

    Xue Q Z, Du C H, Liu P K, Zhang S C 2012 Proc. IEEE IVEC. 421

  • [1]

    Luce T C 2002 IEEE Trans. Plasma Sci. 30 734

    [2]

    Kalaria P C, Kartikeyan M V, Thumm M 2014 IEEE Trans. Plasma Sci. 42 1522

    [3]

    Thumm M 2005 Int. J. Infr. Millim. Waves 26 483

    [4]

    Chu K R 2004 Rev. Mod. Phys. 76 489

    [5]

    Thumm M 2016 State-of-the-Art of High Power gyro-Devices and Free Electron Masers. Update 2015 (KIT Scientific Reports; 7717. Karlsruhe (Germany: Wissenschaftliche Berichte FZKA)

    [6]

    Bratman V, Glyavin M, Idehara T, Kalynov Y, Luchinin Y, Manuilov A, Mitsudo S, Ogawa I, Saito T, Tatematsu Y, Zapevalov V 2009 IEEE Trans. Plasma Sci. 37 36

    [7]

    Flyagin V A, Gaponov A V, Petelin M I, Yulpatov V K 1977 IEEE Trans. Microwave Theory and Techniques. 25 514

    [8]

    Parker R K, Abrams R H, Danly B G, Levush B 2002 IEEE Trans. Microwave Theory and Techniques 50 835

    [9]

    Granatstein V L, Parker R K, Armstrong C M 1999 Proc. IEEE 87 702

    [10]

    Chu K R 2002 IEEE Trans. Plasma Sci. 30 903

    [11]

    Calame J P, Garven M, Danly B G, Levush B, Nguyen K T 2002 IEEE Trans. Electron Dev. 49 1469

    [12]

    Nusinovich G S 1999 IEEE Trans. Plasma Sci. 27 313

    [13]

    Park G S, Choi J J, Park S Y, Armstrong C M, Ganguly A K 1995 Phys. Rev. Lett. 74 2399

    [14]

    Sirigiri J R, Shapiro M A, Temkin R J 2003 Phys. Rev. Lett. 90 258

    [15]

    Thottappan M, Singh S, Jain P K 2016 IEEE Trans. Electron Dev. 63 2118

    [16]

    Denisov G G, Bratman V L, Phelps A, Samsonov S V 1998 IEEE Trans. Plasma Sci. 26 508

    [17]

    Samsonov S V, Gachev I G, Denisov G G, Bogdashov A A, Mishakin S V, Fiks A S, Soluyanova E A, Tai E M, Dominyuk Y V, Levitan B A, Murzin V N 2014 IEEE Trans. Electron Dev. 61 4264

    [18]

    Chu K R, Barnett L R, Chen H Y, Chen S H, Wang C 1995 Phys. Rev. Lett. 74 1103

    [19]

    Chu K R, Chang T H, Barnett L R, Che S H 1999 IEEE Trans. Plasma Sci. 27 391

    [20]

    Yan R, Tang Y, Luo Y 2014 IEEE Trans. Electron Dev. 61 2564

    [21]

    Caplan M, Lin A T, Chu K R 1982 Int. J. Electron. 53 659

    [22]

    Chu K R, Barnett L R, Lau W K, Chang L H, Lin A T, Lin C C 1991 Phys. Fluids B: Plasma Phys 3 2403

    [23]

    Latham P E, Nusinovich G S 1995 Phys. Plasmas 2 3494

    [24]

    Latham P E, Nusinovich G S 1995 Phys. Plasmas 2 3511

    [25]

    Nusinovich G S, Walter M, Zhao J 1998 Phys. Rev.. 58 6594

    [26]

    Peng S, Wang Q, Luo J, Zhang Z 2014 Acta Phys. Sin. 63 207401

    [27]

    Tang Y, Luo J, Xue Q, Fan Y, Wang X, Peng S, Li S 2017 IEEE Trans. Electron Dev. 64 543

    [28]

    Harrington R F 1961 Time Harmonic Electromagnetic Fields (New York: McGraw-Hill)

    [29]

    Pozar D M 1998 Microwave Engineering (New York: Wiley)

    [30]

    Tigelis I G, Vomvoridis J L, Tzima S 1998 IEEE Trans. Plasma. Sci. 26 922

    [31]

    Tang Y, Luo Y, Xu Y, Yan R 2014 J. Infr. Millim. THz Waves 35 799

    [32]

    Xue Q Z, Du C H, Liu P K, Zhang S C 2012 Proc. IEEE IVEC. 421

  • [1] 薛智浩, 刘濮鲲, 杜朝海, 李铮迪. W波段螺旋波纹波导回旋行波管注波互作用的非线性分析. 物理学报, 2012, 61(17): 170201. doi: 10.7498/aps.61.170201
    [2] 薛智浩, 刘濮鲲, 杜朝海. W波段螺旋波纹波导回旋行波管注波互作用的非线性分析. 物理学报, 2014, 63(8): 080201. doi: 10.7498/aps.63.080201
    [3] 彭维峰, 胡玉禄, 杨中海, 李建清, 陆麒如, 李斌. 螺旋线行波管注波互作用时域理论. 物理学报, 2010, 59(12): 8478-8483. doi: 10.7498/aps.59.8478
    [4] 白春江, 李建清, 胡玉禄, 杨中海, 李斌. 利用等效电路模型计算耦合腔行波管注-波互作用. 物理学报, 2012, 61(17): 178401. doi: 10.7498/aps.61.178401
    [5] 颜卫忠, 胡玉禄, 李建清, 杨中海, 田云先, 李斌. 基于三端口网络模型的折叠波导行波管注波互作用理论研究. 物理学报, 2014, 63(23): 238403. doi: 10.7498/aps.63.238403
    [6] 胡玉禄, 杨中海, 李建清, 李斌, 高鹏, 金晓林. 螺旋线行波管三维多频非线性理论分析和数值模拟. 物理学报, 2009, 58(9): 6665-6670. doi: 10.7498/aps.58.6665
    [7] 阮存军, 罗积润, 阮望, 赵鼎, 张小锋. 带状注速调管注波互作用及其计算程序的研究. 物理学报, 2011, 60(6): 068402. doi: 10.7498/aps.60.068402
    [8] 丁耀根, 王 勇, 赵 鼎. 速调管2.5维非线性注波互作用程序的研究. 物理学报, 2007, 56(6): 3324-3331. doi: 10.7498/aps.56.3324
    [9] 曾造金, 马乔生, 胡林林, 蒋艺, 胡鹏, 雷文强, 马国武, 陈洪斌. W波段带状注扩展互作用速调管放大器的理论研究与数值模拟. 物理学报, 2019, 68(24): 248401. doi: 10.7498/aps.68.20190907
    [10] 曾造金, 马乔生, 胡林林, 蒋艺, 胡鹏, 陈洪斌. G波段扩展互作用速调管的理论分析与设计. 物理学报, 2019, 68(15): 154102. doi: 10.7498/aps.68.20190264
    [11] 刘濮鲲, 薛谦忠, 杜朝海. 基于损耗介质加载波导的回旋行波管放大器的互作用分析. 物理学报, 2010, 59(7): 4612-4619. doi: 10.7498/aps.59.4612
    [12] 何俊, 魏彦玉, 宫玉彬, 段兆云, 路志刚, 王文祥. 脊加载曲折波导行波管注波互作用的线性理论研究. 物理学报, 2010, 59(9): 6659-6665. doi: 10.7498/aps.59.6659
    [13] 彭澍源, 王秋实, 张兆传, 罗积润. 回旋行波管多模稳态理论及初步应用. 物理学报, 2014, 63(20): 208401. doi: 10.7498/aps.63.208401
    [14] 罗积润, 孙海燕, 焦重庆. 回旋行波放大器输出端反射对注-波互作用的影响. 物理学报, 2009, 58(2): 925-929. doi: 10.7498/aps.58.925
    [15] 肖刘, 刘濮鲲, 郝保良, 李国超, 姜勇, 易红霞, 周伟. 螺旋线行波管三维频域非线性注波互作用的计算. 物理学报, 2009, 58(5): 3118-3124. doi: 10.7498/aps.58.3118
    [16] 喻 胜, 李宏福, 谢仲怜, 罗 勇. 渐变复合腔回旋管高次谐波注-波互作用非线性模拟. 物理学报, 2000, 49(12): 2455-2459. doi: 10.7498/aps.49.2455
    [17] 郭建华, 喻胜, 李宏福, 张天钟, 雷朝军, 李想, 张颜颜. 回旋速调管注波互作用瞬态非线性理论与模型研究. 物理学报, 2011, 60(9): 090301. doi: 10.7498/aps.60.090301
    [18] 李建清, 莫元龙. 行波管中慢电磁行波与电子注非线性互作用普遍理论. 物理学报, 2006, 55(8): 4117-4122. doi: 10.7498/aps.55.4117
    [19] 颜胜美, 苏伟, 王亚军, 徐翱, 陈樟, 金大志, 向伟. 0.14THz基模多注折叠波导行波管的理论与模拟研究. 物理学报, 2014, 63(23): 238404. doi: 10.7498/aps.63.238404
    [20] 陈晔, 赵鼎, 王勇. 介质加载的矩形截面Cerenkov脉塞中带状电子注与慢波结构互作用的研究. 物理学报, 2012, 61(9): 094102. doi: 10.7498/aps.61.094102
  • 引用本文:
    Citation:
计量
  • 文章访问数:  551
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-13
  • 修回日期:  2017-10-01
  • 刊出日期:  2018-01-05

分布损耗加载回旋行波管多模稳态注波互作用理论与比较证实

  • 1. 中国科学院电子学研究所, 中国科学院高功率微波源与技术重点实验室, 北京 100190;
  • 2. 中国科学院大学, 北京 100039;
  • 3. 中国电子信息技术研究院, 北京 100041
  • 通信作者: 罗积润, luojirun@mail.ie.ac.cn

摘要: 基于目前国际上实验研究的均匀介质加载和周期介质加载结构,建立了一种分布式损耗加载回旋行波管(gyro-TWT)多模稳态注波互作用理论.利用这一理论,以TE01模式基波gyro-TWT注波互作用为例,将Ka和W波段的理论结果与实验和软件仿真进行比较,以证实理论的合理性.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回