搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

引入界面耦合系数的长片型磁电层状复合材料的等效电路模型

楼国锋 于歆杰 卢诗华

引入界面耦合系数的长片型磁电层状复合材料的等效电路模型

楼国锋, 于歆杰, 卢诗华
PDF
导出引用
导出核心图
  • 针对长片型磁电层状复合材料,提出了一种适用于准静态和动态磁场激励的引入界面耦合系数的等效电路模型,旨在为基于长片型磁电层状复合材料的传感器、换能器等器件的设计、制作和应用提供理论指导.考虑到磁电层状复合材料实际工作过程中磁致伸缩层和压电层的应变并不相同,首先利用运动方程分别对磁致伸缩层和压电层进行建模,提出了一个从物理上反映相间应变传递的界面耦合系数表达式,然后利用一个变比恰为界面耦合系数的理想变压器将两层材料的等效电路耦合,构成改进的磁电层状复合材料的等效电路模型,得到包含界面耦合系数的磁电电压系数和最佳层合比的表达式.对12个具有不同尺寸和负载条件的样品进行实验,制作过程中承受500 g砝码负载的样品的界面耦合系数为0.15,最佳层合比为0.57;承受100 g砝码负载的样品的界面耦合系数为0.10,最佳层合比为0.50.磁电电压系数和最佳层合比的实验值与各自包含界面耦合系数的理论值基本符合,证明了改进的等效电路模型的合理性和正确性.
      通信作者: 于歆杰, yuxj@tsinghua.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51377087)资助的课题.
    [1]

    Fiebig M 2005 J. Phys. Appl. Phys. 38 R123

    [2]

    Nan C W, Bichurin M I, Dong S, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101

    [3]

    Ryu J, Carazo A V, Uchino K, Kim H E 2001 Jpn. J. Appl. Phys. 40 4948

    [4]

    Ryu J, Priya S, Carazo A V, Uchino K, Kim H E 2001 J. Am. Ceram. Soc. 84 2905

    [5]

    Harshe G R 1991 Ph. D. Dissertation (Pennsylvania: The Pennsylvania State University)

    [6]

    Harshe G, Dougherty J P, Newnham R E 1993 Int. J. Appl. Electromagn. Mater. 4 145

    [7]

    Avellaneda M, Harshe G 1994 J. Intell. Mater. Syst. Struct. 5 501

    [8]

    Nan C W 1994 Phys. Rev. B 49 12619

    [9]

    Nan C W 1994 J. Appl. Phys. 76 1155

    [10]

    Bichurin M I, Petrov V M, Srinivasan G 2002 J. Appl. Phys. 92 7681

    [11]

    Bichurin M I, Filippov D A, Petrov V M, Laletsin V M, Paddubnaya N, Srinivasan G 2003 Phys. Rev. B 68 132408

    [12]

    Filippov D A 2005 Phys. Solid State 47 1118

    [13]

    Dong S, Li J F, Viehland D 2003 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50 1253

    [14]

    Dong S, Zhai J 2008 Chin. Sci. Bull. 53 2113

    [15]

    Lou G, Yu X, Lu S 2017 Sensors 17 1399

    [16]

    Dong S, Li J F, Viehland D 2004 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51 794

    [17]

    Mason W P 1939 Phys. Rev. 55 775

    [18]

    Mason W P 1964 Physical Acoustics: Principles and Methods (Vol. 1) (New York: Academic Press) p169

    [19]

    Engdahl G 1999 Handbook of Giant Magnetostrictive Materials (San Diego: Academic Press) p135

    [20]

    Ballato A 2001 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48 1189

    [21]

    Yu X, Lou G, Chen H, Wen C, Lu S 2015 IEEE Sens. J. 15 5839

    [22]

    Yu X J, Wu T Y, Li Z 2013 Acta Phys. Sin. 62 058503 (in Chinese)[于歆杰, 吴天逸, 李臻 2013 物理学报 62 058503]

  • [1]

    Fiebig M 2005 J. Phys. Appl. Phys. 38 R123

    [2]

    Nan C W, Bichurin M I, Dong S, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101

    [3]

    Ryu J, Carazo A V, Uchino K, Kim H E 2001 Jpn. J. Appl. Phys. 40 4948

    [4]

    Ryu J, Priya S, Carazo A V, Uchino K, Kim H E 2001 J. Am. Ceram. Soc. 84 2905

    [5]

    Harshe G R 1991 Ph. D. Dissertation (Pennsylvania: The Pennsylvania State University)

    [6]

    Harshe G, Dougherty J P, Newnham R E 1993 Int. J. Appl. Electromagn. Mater. 4 145

    [7]

    Avellaneda M, Harshe G 1994 J. Intell. Mater. Syst. Struct. 5 501

    [8]

    Nan C W 1994 Phys. Rev. B 49 12619

    [9]

    Nan C W 1994 J. Appl. Phys. 76 1155

    [10]

    Bichurin M I, Petrov V M, Srinivasan G 2002 J. Appl. Phys. 92 7681

    [11]

    Bichurin M I, Filippov D A, Petrov V M, Laletsin V M, Paddubnaya N, Srinivasan G 2003 Phys. Rev. B 68 132408

    [12]

    Filippov D A 2005 Phys. Solid State 47 1118

    [13]

    Dong S, Li J F, Viehland D 2003 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50 1253

    [14]

    Dong S, Zhai J 2008 Chin. Sci. Bull. 53 2113

    [15]

    Lou G, Yu X, Lu S 2017 Sensors 17 1399

    [16]

    Dong S, Li J F, Viehland D 2004 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51 794

    [17]

    Mason W P 1939 Phys. Rev. 55 775

    [18]

    Mason W P 1964 Physical Acoustics: Principles and Methods (Vol. 1) (New York: Academic Press) p169

    [19]

    Engdahl G 1999 Handbook of Giant Magnetostrictive Materials (San Diego: Academic Press) p135

    [20]

    Ballato A 2001 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48 1189

    [21]

    Yu X, Lou G, Chen H, Wen C, Lu S 2015 IEEE Sens. J. 15 5839

    [22]

    Yu X J, Wu T Y, Li Z 2013 Acta Phys. Sin. 62 058503 (in Chinese)[于歆杰, 吴天逸, 李臻 2013 物理学报 62 058503]

  • [1] 杨娜娜, 陈轩, 汪尧进. 磁电异质结及器件应用. 物理学报, 2018, 67(15): 157508. doi: 10.7498/aps.67.20180856
    [2] 俞斌, 胡忠强, 程宇心, 彭斌, 周子尧, 刘明. 多铁性磁电器件研究进展. 物理学报, 2018, 67(15): 157507. doi: 10.7498/aps.67.20180857
    [3] 胡辉勇, 张鹤鸣, 吕 懿, 戴显英, 侯 慧, 区健锋, 王 伟, 王喜嫒. SiGe HBT大信号等效电路模型. 物理学报, 2006, 55(1): 403-408. doi: 10.7498/aps.55.403
    [4] 姜彦南, 王扬, 葛德彪, 李思敏, 曹卫平, 高喜, 于新华. 一种基于石墨烯的超宽带吸波器. 物理学报, 2016, 65(5): 054101. doi: 10.7498/aps.65.054101
    [5] 潘海林, 程金科, 赵振杰, 何家康, 阮建中, 杨燮龙, 袁望治. LC共振型巨磁阻抗效应的研究. 物理学报, 2008, 57(5): 3230-3236. doi: 10.7498/aps.57.3230
    [6] 郭帆, 李永东, 王洪广, 刘纯亮, 呼义翔, 张鹏飞, 马萌. Z箍缩装置外磁绝缘传输线全尺寸粒子模拟研究. 物理学报, 2011, 60(10): 102901. doi: 10.7498/aps.60.102901
    [7] 万 红, 刘希从, 谢立强, 吴学忠. TbDyFe/PZT层状复合材料的磁电效应研究. 物理学报, 2005, 54(8): 3872-3877. doi: 10.7498/aps.54.3872
    [8] 王巍, 罗小彬, 杨丽洁, 张宁. 层状磁电复合材料谐振频率下的巨磁电容效应. 物理学报, 2011, 60(10): 107702. doi: 10.7498/aps.60.107702
    [9] 胡丰伟, 包伯成, 武花干, 王春丽. 荷控忆阻器等效电路分析模型及其电路特性研究. 物理学报, 2013, 62(21): 218401. doi: 10.7498/aps.62.218401
    [10] 于歆杰, 吴天逸, 李臻. 基于Metglas/PFC磁电层状复合材料的电能无线传输系统. 物理学报, 2013, 62(5): 058503. doi: 10.7498/aps.62.058503
    [11] 白春江, 李建清, 胡玉禄, 杨中海, 李斌. 利用等效电路模型计算耦合腔行波管注-波互作用. 物理学报, 2012, 61(17): 178401. doi: 10.7498/aps.61.178401
    [12] 张源, 高雁军, 胡诚, 谭兴毅, 邱达, 张婷婷, 朱永丹, 李美亚. 磁铁/压电双晶片复合材料磁电耦合性能的优化设计. 物理学报, 2016, 65(16): 167501. doi: 10.7498/aps.65.167501
    [13] 曹鸿霞, 张 宁. 过渡族元素掺杂BaTiO3-Tb1-xDyxFe2-y层状复合材料中的磁电效应. 物理学报, 2008, 57(10): 6582-6586. doi: 10.7498/aps.57.6582
    [14] 毕科, 艾迁伟, 杨路, 吴玮, 王寅岗. Ni/Pb(Zr,Ti)O3/TbFe2层状复合材料的谐振磁电特性研究. 物理学报, 2011, 60(5): 057503. doi: 10.7498/aps.60.057503
    [15] 李宇涵, 邓联文, 罗衡, 贺龙辉, 贺君, 徐运超, 黄生祥. 双层螺旋环超表面复合吸波体等效电路模型及微波损耗机制. 物理学报, 2019, 68(9): 095201. doi: 10.7498/aps.68.20181960
    [16] 马静, 施展, 林元华, 南策文. 准2-2型磁电多层复合材料的磁电性能. 物理学报, 2009, 58(8): 5852-5856. doi: 10.7498/aps.58.5852
    [17] 施展, 陈来柱, 佟永帅, 郑智滨, 杨水源, 王翠萍, 刘兴军. Terfenol-D/PZT磁电复合材料的磁电相位移动研究. 物理学报, 2013, 62(1): 017501. doi: 10.7498/aps.62.017501
    [18] 曹江伟, 王锐, 王颖, 白建民, 魏福林. 隧穿磁电阻效应磁场传感器中低频噪声的测量与研究. 物理学报, 2016, 65(5): 057501. doi: 10.7498/aps.65.057501
    [19] 张武, 王燕. 光学非均匀复合材料的多元滞后器模型. 物理学报, 1994, 43(8): 1380-1385. doi: 10.7498/aps.43.1380
    [20] 周剑平, 施 展, 何泓材, 南策文, 刘 刚. 铁电/铁磁1-3型结构复合材料磁电性能分析. 物理学报, 2006, 55(7): 3766-3771. doi: 10.7498/aps.55.3766
  • 引用本文:
    Citation:
计量
  • 文章访问数:  518
  • PDF下载量:  183
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-20
  • 修回日期:  2017-10-23
  • 刊出日期:  2018-01-20

引入界面耦合系数的长片型磁电层状复合材料的等效电路模型

  • 1. 清华大学电机工程与应用电子技术系, 电力系统国家重点实验室, 北京 100084
  • 通信作者: 于歆杰, yuxj@tsinghua.edu.cn
    基金项目: 

    国家自然科学基金(批准号:51377087)资助的课题.

摘要: 针对长片型磁电层状复合材料,提出了一种适用于准静态和动态磁场激励的引入界面耦合系数的等效电路模型,旨在为基于长片型磁电层状复合材料的传感器、换能器等器件的设计、制作和应用提供理论指导.考虑到磁电层状复合材料实际工作过程中磁致伸缩层和压电层的应变并不相同,首先利用运动方程分别对磁致伸缩层和压电层进行建模,提出了一个从物理上反映相间应变传递的界面耦合系数表达式,然后利用一个变比恰为界面耦合系数的理想变压器将两层材料的等效电路耦合,构成改进的磁电层状复合材料的等效电路模型,得到包含界面耦合系数的磁电电压系数和最佳层合比的表达式.对12个具有不同尺寸和负载条件的样品进行实验,制作过程中承受500 g砝码负载的样品的界面耦合系数为0.15,最佳层合比为0.57;承受100 g砝码负载的样品的界面耦合系数为0.10,最佳层合比为0.50.磁电电压系数和最佳层合比的实验值与各自包含界面耦合系数的理论值基本符合,证明了改进的等效电路模型的合理性和正确性.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回