搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Korteweg-de Vries方程的准孤立子解及其在离子声波中的应用

王建勇 程雪苹 曾莹 张元祥 葛宁怡

Korteweg-de Vries方程的准孤立子解及其在离子声波中的应用

王建勇, 程雪苹, 曾莹, 张元祥, 葛宁怡
PDF
导出引用
  • 应用推广的tanh函数展开法,给出了Korteweg-de Vries方程具有准孤立子行为的两组孤子-椭圆周期波解,其中一组为新解.推导了均匀磁化等离子体中描述离子声波动力学行为的Korteweg-de Vries方程,发现电子分布、离子电子温度比、磁场大小、磁场方向对离子声准孤立子的波形具有显著影响.
      通信作者: 王建勇, jywangqz@126.com
    • 基金项目: 国家自然科学基金(批准号:11605102,11505154,51605252)和衢州学院博士科研启动基金(批准号:201507,201508)资助的课题.
    [1]

    Lax P D 1968 Commun. Pur. Appl. Math. 21 467

    [2]

    Miura R, Gardner C, Kruskal M 1968 J. Math. Phys. 9 1204

    [3]

    Hirota R 1971 Phys. Rev. Lett. 27 1192

    [4]

    Weiss J, Tabor M, Carnevale G 1983 J. Math. Phys. 25 522

    [5]

    Dauxois T, Peyrard M 2006 Physics of Solitons (Cambridge: Cambridge University Press)

    [6]

    Jeffrey A, Kakutani T 1972 SIAM Rev. 14 582

    [7]

    Bandyopadhyay P, Prasad G, Sen A, Kaw P K 2008 Phys. Rev. Lett. 101 065006

    [8]

    Cheng X P, Li J Y, Xue J R 2011 Acta Phys. Sin. 60 110204(in Chinese) [程雪苹, 李金玉, 薛江蓉 2011 物理学报 60 110204]

    [9]

    Mao J J, Yang J R, Li C Y 2012 Acta Phys. Sin. 61 020206(in Chinese) [毛杰健, 杨建荣, 李超英 2012 物理学报 61 020206]

    [10]

    Lou S Y, Hu X R, Chen Y 2012 J. Phys. A: Math. Theor. 45 155209

    [11]

    Lou S Y 2015 Stud. Appl. Math. 134 372

    [12]

    Tang X Y, Hao X Z, Liang Z F 2017 Comp. Math. Appl. 74 1311

    [13]

    Tang X Y, Liang Z F, Wang J Y 2015 J. Phys. A: Math. Theor. 48 285204

    [14]

    Gao X N, Lou S Y, Tang X Y 2013 JHEP 05 029

    [15]

    Chen C L, Lou S Y 2013 Chin. Phys. Lett. 30 110202

    [16]

    Cheng X P, Lou S Y, Chen C L, Tang X Y 2014 Phys. Rev. E 89 043202

    [17]

    Ren B, Cheng X P, Lin J 2016 Nonlinear Dyn. 86 1855

    [18]

    Ren B 2017 Commun. Nonlinear Sci. Numer. Simul. 42 456

    [19]

    Hao X Z, Liu Y P, Tang X Y, Li Z B 2016 Comp. Math. Appl. 72 2405

    [20]

    Wang J Y, Cheng X P, Tang X Y, Yang J R, Ren B 2014 Phys. Plasmas 21 032111

    [21]

    Deeskow P, Schamel H, Rao N N, Yu M Y, Varma R K, Shukla P K 1987 Phys. Fluids 30 2703

    [22]

    Keane A J, Mushtaq A, Wheatland M S 2011 Phys. Rev. E 83 066407

    [23]

    Davis R E, Acrivos A 1967 J. Fluid Mech. 29 593

    [24]

    Farmer D M, Smith J D 1980 Deep-sea Rea. 27A 239

    [25]

    Akylas T R, Grimshaw R H J 1992 J. Fluid Mech. 242 279

    [26]

    Wang J Y, Tang X Y, Lou S Y, Gao X N, Jia M 2014 Europhys. Lett. 108 20005

    [27]

    Williams G, Kourakis I 2013 Plasma Phys. Controlled Fusion 55 055005

    [28]

    Singh S V, Devanandhan S, Lakhina G S, Bharuthram R 2013 Phys. Plasmas 20 012306

    [29]

    Saini N S, Kourakis I 2010 Plasma Phys. Controlled Fusion 52 075009

  • [1]

    Lax P D 1968 Commun. Pur. Appl. Math. 21 467

    [2]

    Miura R, Gardner C, Kruskal M 1968 J. Math. Phys. 9 1204

    [3]

    Hirota R 1971 Phys. Rev. Lett. 27 1192

    [4]

    Weiss J, Tabor M, Carnevale G 1983 J. Math. Phys. 25 522

    [5]

    Dauxois T, Peyrard M 2006 Physics of Solitons (Cambridge: Cambridge University Press)

    [6]

    Jeffrey A, Kakutani T 1972 SIAM Rev. 14 582

    [7]

    Bandyopadhyay P, Prasad G, Sen A, Kaw P K 2008 Phys. Rev. Lett. 101 065006

    [8]

    Cheng X P, Li J Y, Xue J R 2011 Acta Phys. Sin. 60 110204(in Chinese) [程雪苹, 李金玉, 薛江蓉 2011 物理学报 60 110204]

    [9]

    Mao J J, Yang J R, Li C Y 2012 Acta Phys. Sin. 61 020206(in Chinese) [毛杰健, 杨建荣, 李超英 2012 物理学报 61 020206]

    [10]

    Lou S Y, Hu X R, Chen Y 2012 J. Phys. A: Math. Theor. 45 155209

    [11]

    Lou S Y 2015 Stud. Appl. Math. 134 372

    [12]

    Tang X Y, Hao X Z, Liang Z F 2017 Comp. Math. Appl. 74 1311

    [13]

    Tang X Y, Liang Z F, Wang J Y 2015 J. Phys. A: Math. Theor. 48 285204

    [14]

    Gao X N, Lou S Y, Tang X Y 2013 JHEP 05 029

    [15]

    Chen C L, Lou S Y 2013 Chin. Phys. Lett. 30 110202

    [16]

    Cheng X P, Lou S Y, Chen C L, Tang X Y 2014 Phys. Rev. E 89 043202

    [17]

    Ren B, Cheng X P, Lin J 2016 Nonlinear Dyn. 86 1855

    [18]

    Ren B 2017 Commun. Nonlinear Sci. Numer. Simul. 42 456

    [19]

    Hao X Z, Liu Y P, Tang X Y, Li Z B 2016 Comp. Math. Appl. 72 2405

    [20]

    Wang J Y, Cheng X P, Tang X Y, Yang J R, Ren B 2014 Phys. Plasmas 21 032111

    [21]

    Deeskow P, Schamel H, Rao N N, Yu M Y, Varma R K, Shukla P K 1987 Phys. Fluids 30 2703

    [22]

    Keane A J, Mushtaq A, Wheatland M S 2011 Phys. Rev. E 83 066407

    [23]

    Davis R E, Acrivos A 1967 J. Fluid Mech. 29 593

    [24]

    Farmer D M, Smith J D 1980 Deep-sea Rea. 27A 239

    [25]

    Akylas T R, Grimshaw R H J 1992 J. Fluid Mech. 242 279

    [26]

    Wang J Y, Tang X Y, Lou S Y, Gao X N, Jia M 2014 Europhys. Lett. 108 20005

    [27]

    Williams G, Kourakis I 2013 Plasma Phys. Controlled Fusion 55 055005

    [28]

    Singh S V, Devanandhan S, Lakhina G S, Bharuthram R 2013 Phys. Plasmas 20 012306

    [29]

    Saini N S, Kourakis I 2010 Plasma Phys. Controlled Fusion 52 075009

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1851
  • PDF下载量:  217
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-18
  • 修回日期:  2018-01-28
  • 刊出日期:  2018-06-05

Korteweg-de Vries方程的准孤立子解及其在离子声波中的应用

  • 1. 衢州学院教师教育学院, 衢州 324000;
  • 2. 浙江海洋大学物理系, 舟山 316004;
  • 3. 衢州学院机械工程学院, 衢州 324000
  • 通信作者: 王建勇, jywangqz@126.com
    基金项目: 

    国家自然科学基金(批准号:11605102,11505154,51605252)和衢州学院博士科研启动基金(批准号:201507,201508)资助的课题.

摘要: 应用推广的tanh函数展开法,给出了Korteweg-de Vries方程具有准孤立子行为的两组孤子-椭圆周期波解,其中一组为新解.推导了均匀磁化等离子体中描述离子声波动力学行为的Korteweg-de Vries方程,发现电子分布、离子电子温度比、磁场大小、磁场方向对离子声准孤立子的波形具有显著影响.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回