搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni/Au/n-GaN肖特基二极管可导位错的电学模型

王翔 陈雷雷 曹艳荣 羊群思 朱培敏 杨国锋 王福学 闫大为 顾晓峰

Ni/Au/n-GaN肖特基二极管可导位错的电学模型

王翔, 陈雷雷, 曹艳荣, 羊群思, 朱培敏, 杨国锋, 王福学, 闫大为, 顾晓峰
PDF
导出引用
  • 可导线性位错被普遍认为是GaN基器件泄漏电流的主要输运通道,但其精细的电学模型目前仍不清楚.鉴于此,本文基于对GaN肖特基二极管的电流输运机制分析提出可导位错的物理模型,重点强调:1) 位于位错中心的深能级受主态(主要Ga空位)电离后库仑势较高,理论上对泄漏电流没有贡献;2) 位错周围的高浓度浅能级施主态电离后能形成势垒高度较低的薄表面耗尽层,可引发显著隧穿电流,成为主要漏电通道;3) 并非传统N空位,认为O替代N所形成的浅能级施主缺陷应是引发漏电的主要电学态,其热激活能约为47.5 meV.本工作亦有助于理解其他GaN器件的电流输运和电学退化行为.
      通信作者: 顾晓峰, xgu@jiangnan.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61504050,11604124,51607022)资助的课题.
    [1]

    Cao X A, Stokes E B, Sandvik P M, LeBoeuf S F, Kretchmer J, Walker D 2002 IEEE Electron. Dev. Lett. 23 535

    [2]

    Hsu J W P, Manfra M J, Molnar R J, Heying B, Speck J S 2002 Appl. Phys. Lett. 81 79

    [3]

    Miller E J, Yu E T, Waltereit P, Speck J S 2004 Appl. Phys. Lett. 84 535

    [4]

    Miller E J, Schaadt D M, Yu E T, Poblenz C, Elsass C, Speck J S 2002 J. Appl. Phys. 91 9821

    [5]

    Zhang H, Miller E J, Yu E T 2006 Appl. Phys. Lett. 99 023703

    [6]

    Lei Y, Lu H, Cao D S, Chen D J, Zhang R, Zheng Y D 2013 Solid State Electron. 82 63

    [7]

    Hashizume T, Kotani J, Hasegawa H 2004 Appl. Phys. Lett. 84 4884

    [8]

    Ren B, Liao M, Sumiya M, Wang L, Koide Y, Sang L 2017 Appl. Phys. Express 10 051001

    [9]

    Sze S M, Ng K K 1981 Physics of Semiconductor Devices p163 (New York:Wiley)

    [10]

    Look D C, Stutz C E, Molnar R J, Saarinen K, Liliental-Weber Z 2001 Solid State Commun. 117 571

    [11]

    Ren J, Yan D W, Yang G F, Wang F X, Xiao S Q, Gu X F 2015 J. Appl. Phys. 117 154503

    [12]

    Ren J, Mou W J, Zhao L N, Yan D W, Yu Z G, Yang G F, Xiao S Q, Gu X F 2017 IEEE Trans. Electron Devices 64 407

    [13]

    Hawkridge M E, Cherns D 2005 Appl. Phys. Lett. 87 221903

    [14]

    Roy T, Zhang E X, Puzyrev Y S, Shen X, Fleetwood D M, Schrimpf R D, Koblmueller G, Chu R, Poblenz C, Fichtenbaum N, Suh C S, Mishra U K, Speck J S, Pantelides S T 2011 Appl. Phys. Lett. 99 203501

    [15]

    Jiang R, Shen X, Chen J, Duan G X, Zhang E X, Fleetwood D M, Schrimpf R D, Kaun S W, Kyle E C H, Speck J S, Pantelides S T 2016 Appl. Phys. Lett. 109 023511

    [16]

    Elsner J, Jones R, Heggie M I, Sitch P K, Haugk M, Frauenheim T, berg S, Briddon P R 1998 Phys. Rev. B 58 12571

    [17]

    Oila J, Kivioja J, Ranki V, Saarinen K, Look D C, Molnar R J, Park S S, Lee S K, Han J Y 2003 Appl. Phys. Lett. 82 3433

    [18]

    Lei H, Leipner H S, Schreiber J, Weyher J L, Wosiński T, Grzegory I 2002 J. Appl. Phys. 92 6666

    [19]

    Cherns D, Jiao C G 2001 Phys. Rev. Lett. 87 205504

    [20]

    Cao X A, Teetsov J A, Shahedipour-Sandvik F, Arthur S D 2004 J. Cryst. Growth 264 172

    [21]

    Han S W, Yang S, Sheng K 2018 IEEE Electron. Dev. Lett. 39 572

  • [1]

    Cao X A, Stokes E B, Sandvik P M, LeBoeuf S F, Kretchmer J, Walker D 2002 IEEE Electron. Dev. Lett. 23 535

    [2]

    Hsu J W P, Manfra M J, Molnar R J, Heying B, Speck J S 2002 Appl. Phys. Lett. 81 79

    [3]

    Miller E J, Yu E T, Waltereit P, Speck J S 2004 Appl. Phys. Lett. 84 535

    [4]

    Miller E J, Schaadt D M, Yu E T, Poblenz C, Elsass C, Speck J S 2002 J. Appl. Phys. 91 9821

    [5]

    Zhang H, Miller E J, Yu E T 2006 Appl. Phys. Lett. 99 023703

    [6]

    Lei Y, Lu H, Cao D S, Chen D J, Zhang R, Zheng Y D 2013 Solid State Electron. 82 63

    [7]

    Hashizume T, Kotani J, Hasegawa H 2004 Appl. Phys. Lett. 84 4884

    [8]

    Ren B, Liao M, Sumiya M, Wang L, Koide Y, Sang L 2017 Appl. Phys. Express 10 051001

    [9]

    Sze S M, Ng K K 1981 Physics of Semiconductor Devices p163 (New York:Wiley)

    [10]

    Look D C, Stutz C E, Molnar R J, Saarinen K, Liliental-Weber Z 2001 Solid State Commun. 117 571

    [11]

    Ren J, Yan D W, Yang G F, Wang F X, Xiao S Q, Gu X F 2015 J. Appl. Phys. 117 154503

    [12]

    Ren J, Mou W J, Zhao L N, Yan D W, Yu Z G, Yang G F, Xiao S Q, Gu X F 2017 IEEE Trans. Electron Devices 64 407

    [13]

    Hawkridge M E, Cherns D 2005 Appl. Phys. Lett. 87 221903

    [14]

    Roy T, Zhang E X, Puzyrev Y S, Shen X, Fleetwood D M, Schrimpf R D, Koblmueller G, Chu R, Poblenz C, Fichtenbaum N, Suh C S, Mishra U K, Speck J S, Pantelides S T 2011 Appl. Phys. Lett. 99 203501

    [15]

    Jiang R, Shen X, Chen J, Duan G X, Zhang E X, Fleetwood D M, Schrimpf R D, Kaun S W, Kyle E C H, Speck J S, Pantelides S T 2016 Appl. Phys. Lett. 109 023511

    [16]

    Elsner J, Jones R, Heggie M I, Sitch P K, Haugk M, Frauenheim T, berg S, Briddon P R 1998 Phys. Rev. B 58 12571

    [17]

    Oila J, Kivioja J, Ranki V, Saarinen K, Look D C, Molnar R J, Park S S, Lee S K, Han J Y 2003 Appl. Phys. Lett. 82 3433

    [18]

    Lei H, Leipner H S, Schreiber J, Weyher J L, Wosiński T, Grzegory I 2002 J. Appl. Phys. 92 6666

    [19]

    Cherns D, Jiao C G 2001 Phys. Rev. Lett. 87 205504

    [20]

    Cao X A, Teetsov J A, Shahedipour-Sandvik F, Arthur S D 2004 J. Cryst. Growth 264 172

    [21]

    Han S W, Yang S, Sheng K 2018 IEEE Electron. Dev. Lett. 39 572

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1966
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-21
  • 修回日期:  2018-07-02
  • 刊出日期:  2018-09-05

Ni/Au/n-GaN肖特基二极管可导位错的电学模型

  • 1. 江南大学电子工程系, 物联网技术应用教育部工程研究中心, 无锡 214122;
  • 2. 西安电子科技大学, 宽带隙半导体技术国家重点学科实验室, 西安 710071
  • 通信作者: 顾晓峰, xgu@jiangnan.edu.cn
    基金项目: 

    国家自然科学基金(批准号:61504050,11604124,51607022)资助的课题.

摘要: 可导线性位错被普遍认为是GaN基器件泄漏电流的主要输运通道,但其精细的电学模型目前仍不清楚.鉴于此,本文基于对GaN肖特基二极管的电流输运机制分析提出可导位错的物理模型,重点强调:1) 位于位错中心的深能级受主态(主要Ga空位)电离后库仑势较高,理论上对泄漏电流没有贡献;2) 位错周围的高浓度浅能级施主态电离后能形成势垒高度较低的薄表面耗尽层,可引发显著隧穿电流,成为主要漏电通道;3) 并非传统N空位,认为O替代N所形成的浅能级施主缺陷应是引发漏电的主要电学态,其热激活能约为47.5 meV.本工作亦有助于理解其他GaN器件的电流输运和电学退化行为.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回