搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自发辐射相干效应的可调光子带隙反射率的提高方法

杨柳 郜中星 薛冰 张勇刚 蔡永茂

基于自发辐射相干效应的可调光子带隙反射率的提高方法

杨柳, 郜中星, 薛冰, 张勇刚, 蔡永茂
PDF
导出引用
导出核心图
  • 光子带隙是指某一频率范围的波不能在周期变化的空间介质中传播,即这种结构本身存在“禁带”,并已成功地应用于滤波器、放大器和混频器等器件的设计中.此前,许多专家都致力于提高带隙的反射率,但其只能逐渐接近1.本文在囚禁于一维光晶格中的冷原子介质中实现两个可调光子带隙,并通过选择两基态为精细结构的三能级∧型原子系统,考虑自发辐射相干效应来探究这两个带隙的反射率.适当调节参数,探测场出现增益,从而获得较高反射率的带隙结构,甚至可以超过1.此外,两个带隙反射率还可以通过调节偶极矩之间的夹角以及非相干驱动场强度等参数来操控.
    • 基金项目: 国家自然科学基金(批准号:11747048,11804066,61773133)、中国博士后科学基金(批准号:2018M630337)和中央高校基本科研业务费专项资金(批准号:HEUCFM180401)资助的课题.
    [1]

    Bao Q Q, Yang L, Ba N, Cui C L, Wu J H 2013 J. Opt. Soc. Am. B 30 1532

    [2]

    Appel J, Figueroa E, Korystov D, Lobino M, Lvovsky A I 2008 Phys. Rev. Lett. 100 093602

    [3]

    Yang L, He B, Wu J H, Zhang Z, Xiao M 2016 Optica 3 1095

    [4]

    Gärttner M, Evers J 2013 Phys. Rev. A 88 033417

    [5]

    Alireza L, Yadipour R, Baghban H 2017 Chin. Phys. B 26 124207

    [6]

    Zhang Y, Wang X, Zhang Y Z 2018 Laser Phys. Lett. 15 075402

    [7]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [8]

    Artoni M, La Rocca G 2006 Phys. Rev. Lett. 96 073905

    [9]

    Wu Z K, Zhang Y Q, Yuan C Z, Wen F, Zheng H B, Zhang Y P 2013 Phys. Rev. A 88 063828

    [10]

    Chen H X, Zhang X, Zhu D Y, Yang C, Jiang T, Zheng H B, Zhang Y P 2014 Phys. Rev. A 90 043846

    [11]

    Zhang Y P, Wang Z G, Nie Z Q, Li C B, Chen H X, Lu K Q, Xiao M 2011 Phys. Rev. Lett. 106 093904

    [12]

    Zhang Y Q, Wu Z K, Belić M R, Zheng H B, Wang Z G, Xiao M, Zhang Y P 2015 Laser & Photon. Rev. 9 331

    [13]

    Schilke A, Zimmermann C, Courteille P W, Guerin W 2011 Phys. Rev. Lett. 106 223903

    [14]

    Petrosyan D 2007 Phys. Rev. A 76 053823

    [15]

    Schilke A, Zimmermann C, Guerin W 2012 Phys. Rev. A 86 023809

    [16]

    Tariq M, Ziauddin, Bano T, Ahmad I, Lee R K 2017 J. Modern Opt. 64 1777

    [17]

    Ba Nuo, Wu X Y, Li D F, Wang D, Fei J Y, Wang L 2017 Chin. Phys. B 26 54207

    [18]

    Wu J H, Gao J Y 2002 Phys. Rev. A 65 063807

    [19]

    Horsley S A R, Wu J H, Artoni M, La Rocca G C 2013 Phys. Rev. Lett. 110 223602

    [20]

    Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J, Zhu S Y 2013 Phys. Rev. Lett. 110 093901

    [21]

    Gao J W, Bao Q Q, Wan R G, Cui C L, Wu J H 2011 Phys. Rev. A 83 053815

    [22]

    Bendickson J M, Dowling J P, Scalora M 1996 Phys. Rev. E 53 4107

    [23]

    Yang L, Zhang Y, Yan X B, Sheng Y, Cui C L, Wu J H 2015 Phys. Rev. A 92 053859

  • [1]

    Bao Q Q, Yang L, Ba N, Cui C L, Wu J H 2013 J. Opt. Soc. Am. B 30 1532

    [2]

    Appel J, Figueroa E, Korystov D, Lobino M, Lvovsky A I 2008 Phys. Rev. Lett. 100 093602

    [3]

    Yang L, He B, Wu J H, Zhang Z, Xiao M 2016 Optica 3 1095

    [4]

    Gärttner M, Evers J 2013 Phys. Rev. A 88 033417

    [5]

    Alireza L, Yadipour R, Baghban H 2017 Chin. Phys. B 26 124207

    [6]

    Zhang Y, Wang X, Zhang Y Z 2018 Laser Phys. Lett. 15 075402

    [7]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [8]

    Artoni M, La Rocca G 2006 Phys. Rev. Lett. 96 073905

    [9]

    Wu Z K, Zhang Y Q, Yuan C Z, Wen F, Zheng H B, Zhang Y P 2013 Phys. Rev. A 88 063828

    [10]

    Chen H X, Zhang X, Zhu D Y, Yang C, Jiang T, Zheng H B, Zhang Y P 2014 Phys. Rev. A 90 043846

    [11]

    Zhang Y P, Wang Z G, Nie Z Q, Li C B, Chen H X, Lu K Q, Xiao M 2011 Phys. Rev. Lett. 106 093904

    [12]

    Zhang Y Q, Wu Z K, Belić M R, Zheng H B, Wang Z G, Xiao M, Zhang Y P 2015 Laser & Photon. Rev. 9 331

    [13]

    Schilke A, Zimmermann C, Courteille P W, Guerin W 2011 Phys. Rev. Lett. 106 223903

    [14]

    Petrosyan D 2007 Phys. Rev. A 76 053823

    [15]

    Schilke A, Zimmermann C, Guerin W 2012 Phys. Rev. A 86 023809

    [16]

    Tariq M, Ziauddin, Bano T, Ahmad I, Lee R K 2017 J. Modern Opt. 64 1777

    [17]

    Ba Nuo, Wu X Y, Li D F, Wang D, Fei J Y, Wang L 2017 Chin. Phys. B 26 54207

    [18]

    Wu J H, Gao J Y 2002 Phys. Rev. A 65 063807

    [19]

    Horsley S A R, Wu J H, Artoni M, La Rocca G C 2013 Phys. Rev. Lett. 110 223602

    [20]

    Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J, Zhu S Y 2013 Phys. Rev. Lett. 110 093901

    [21]

    Gao J W, Bao Q Q, Wan R G, Cui C L, Wu J H 2011 Phys. Rev. A 83 053815

    [22]

    Bendickson J M, Dowling J P, Scalora M 1996 Phys. Rev. E 53 4107

    [23]

    Yang L, Zhang Y, Yan X B, Sheng Y, Cui C L, Wu J H 2015 Phys. Rev. A 92 053859

  • 引用本文:
    Citation:
计量
  • 文章访问数:  991
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-17
  • 修回日期:  2018-08-28
  • 刊出日期:  2018-12-05

基于自发辐射相干效应的可调光子带隙反射率的提高方法

  • 1. 哈尔滨工程大学自动化学院, 哈尔滨 150001;
  • 2. 哈尔滨工程大学理学院, 哈尔滨 150001;
  • 3. 东北电力大学理学院, 吉林 132012
    基金项目: 

    国家自然科学基金(批准号:11747048,11804066,61773133)、中国博士后科学基金(批准号:2018M630337)和中央高校基本科研业务费专项资金(批准号:HEUCFM180401)资助的课题.

摘要: 光子带隙是指某一频率范围的波不能在周期变化的空间介质中传播,即这种结构本身存在“禁带”,并已成功地应用于滤波器、放大器和混频器等器件的设计中.此前,许多专家都致力于提高带隙的反射率,但其只能逐渐接近1.本文在囚禁于一维光晶格中的冷原子介质中实现两个可调光子带隙,并通过选择两基态为精细结构的三能级∧型原子系统,考虑自发辐射相干效应来探究这两个带隙的反射率.适当调节参数,探测场出现增益,从而获得较高反射率的带隙结构,甚至可以超过1.此外,两个带隙反射率还可以通过调节偶极矩之间的夹角以及非相干驱动场强度等参数来操控.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回