搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维各向同性谐振子的几何动量分布

刘全慧 张梦男 肖世发 寻大毛

三维各向同性谐振子的几何动量分布

刘全慧, 张梦男, 肖世发, 寻大毛
PDF
HTML
导出引用
  • 尽管几何动量最初的引入是为了描述超面上的运动粒子的动量,却不需要限制在真实的曲面上.如果一个曲线坐标系包含了超面族和超面上的法向矢量作为一个坐标轴的单位矢量,几何动量可以定义在超面族上,并参与构造对易力学量完全集.在三维各向同性谐振子中,采用球坐标描述,存在等效球面,并在球面族上建立对易力学量完全集.因此,三维各向同性谐振子同时具有动量和几何动量分布.这两个动量的差,可以定义为径向动量,从而使得径向动量可以测量.那么,通过几何动量,可以显示出狄拉克引进的径向动量的物理意义,而不是一直认为的那样完全不具有观测意义.
    [1]

    Liu Q H, Tang L H, Xun D M 2011 Phys. Rev. A 84 042101

    [2]

    Spittel R, Uebel P, Bartelt H, Schmidt M A 2015 Opt. Express 23 12174

    [3]

    Liu Q H 2013 J. Phys. Soc. Jpn. 82 104002

    [4]

    Xun D M, Liu Q H 2013 Int. J. Geom. Methods Mod. Phys. 10 1220031

    [5]

    Xun D M, Liu Q H, Zhu X M 2013 Ann. Phys. (N.Y.) 338 123

    [6]

    Xun D M, Liu Q H 2014 Ann. Phys. (N.Y.) 341 132

    [7]

    Zhang Z S, Xiao S F, Xun D M, Liu Q H 2015 Commun. Theor. Phys. 63 19

    [8]

    Wang Y L, Du L, Xu C T, Liu X J, Zong H S 2014 Phys. Rev. A 90 042117

    [9]

    Wang Y L, Jiang H, Zong H S 2017 Phys. Rev. A 96 022116

    [10]

    Lian D K, Hu L D, Liu Q H 2018 Ann. Phys. 530 1700415

    [11]

    Liu Q H 2013 J. Math. Phys. 54 122113

    [12]

    Dirac P A M 1967 The Principles of Quantum Mechanics (4th edition) (Oxford: Oxford University Press) p114, p153

    [13]

    Robinson P D, Hirschfelder J O 1963 J. Math. Phys. 4 338

    [14]

    Arthurs A M 1968 Proc. Natl. Acad. Sci. USA 60 1105

    [15]

    Domingos J M, Caldeira M H 1984 Found. Phys. 14 147

    [16]

    Liu Q H, Xiao S F 2015 Int. J. Geom. Methods Mod. Phys. 12 1550028

    [17]

    Xiao S F, Liu Q H 2018 Mod. Phys. Lett. A 33 1850125

    [18]

    Liu Q H 2014 Phys. Lett. A 378 785

    [19]

    Yang C N 1977 Ann. NY Acad. Sci. 294 86

  • [1]

    Liu Q H, Tang L H, Xun D M 2011 Phys. Rev. A 84 042101

    [2]

    Spittel R, Uebel P, Bartelt H, Schmidt M A 2015 Opt. Express 23 12174

    [3]

    Liu Q H 2013 J. Phys. Soc. Jpn. 82 104002

    [4]

    Xun D M, Liu Q H 2013 Int. J. Geom. Methods Mod. Phys. 10 1220031

    [5]

    Xun D M, Liu Q H, Zhu X M 2013 Ann. Phys. (N.Y.) 338 123

    [6]

    Xun D M, Liu Q H 2014 Ann. Phys. (N.Y.) 341 132

    [7]

    Zhang Z S, Xiao S F, Xun D M, Liu Q H 2015 Commun. Theor. Phys. 63 19

    [8]

    Wang Y L, Du L, Xu C T, Liu X J, Zong H S 2014 Phys. Rev. A 90 042117

    [9]

    Wang Y L, Jiang H, Zong H S 2017 Phys. Rev. A 96 022116

    [10]

    Lian D K, Hu L D, Liu Q H 2018 Ann. Phys. 530 1700415

    [11]

    Liu Q H 2013 J. Math. Phys. 54 122113

    [12]

    Dirac P A M 1967 The Principles of Quantum Mechanics (4th edition) (Oxford: Oxford University Press) p114, p153

    [13]

    Robinson P D, Hirschfelder J O 1963 J. Math. Phys. 4 338

    [14]

    Arthurs A M 1968 Proc. Natl. Acad. Sci. USA 60 1105

    [15]

    Domingos J M, Caldeira M H 1984 Found. Phys. 14 147

    [16]

    Liu Q H, Xiao S F 2015 Int. J. Geom. Methods Mod. Phys. 12 1550028

    [17]

    Xiao S F, Liu Q H 2018 Mod. Phys. Lett. A 33 1850125

    [18]

    Liu Q H 2014 Phys. Lett. A 378 785

    [19]

    Yang C N 1977 Ann. NY Acad. Sci. 294 86

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1821
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-03
  • 修回日期:  2018-11-06

三维各向同性谐振子的几何动量分布

  • 1. 湖南大学物理与微电子科学学院, 理论物理研究所, 长沙 410082;
  • 2. 岭南师范学院物理科学与技术学院, 湛江 524048;
  • 3. 江西科技师范大学通信与电子学院, 南昌 330013
    基金项目: 

    国家自然科学基金(批准号:11675051)资助的课题.

摘要: 尽管几何动量最初的引入是为了描述超面上的运动粒子的动量,却不需要限制在真实的曲面上.如果一个曲线坐标系包含了超面族和超面上的法向矢量作为一个坐标轴的单位矢量,几何动量可以定义在超面族上,并参与构造对易力学量完全集.在三维各向同性谐振子中,采用球坐标描述,存在等效球面,并在球面族上建立对易力学量完全集.因此,三维各向同性谐振子同时具有动量和几何动量分布.这两个动量的差,可以定义为径向动量,从而使得径向动量可以测量.那么,通过几何动量,可以显示出狄拉克引进的径向动量的物理意义,而不是一直认为的那样完全不具有观测意义.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回